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ABSTRACT

Background: The PIWI module, found in the PIWI/AGO superfamily of proteins, is a critical
component of several cellular pathways including germline maintenance, chromatin organization,
regulation of splicing, RNA interference, and virus suppression. It binds a guide strand which helps
it target complementary nucleic strands.

Results: Here we report the discovery of two divergent, novel families of PIWI modules, the first
such to be described since the initial discovery of the PIWI/AGO superfamily over a decade ago.
Both families display conservation patterns consistent with the binding of oligonucleotide guide
strands. The first family is bacterial in distribution and is typically encoded by a distinctive three-
gene operon alongside genes for a restriction endonuclease fold enzyme and a helicase of the DinG
family. The second family is found only in eukaryotes. It is the core conserved module of the Med13
protein, a subunit of the CDK8 subcomplex of the transcription regulatory Mediator complex.

Conclusions: Based on the presence of the DinG family helicase, which specifically acts on R-loops,
we infer that the first family of PIWI modules is part of a novel RNA-dependent restriction system
which could target invasive DNA from phages, plasmids or conjugative transposons. It is predicted
to facilitate restriction of actively transcribed invading DNA by utilizing RNA guides. The PIWI
family found in the eukaryotic Med13 proteins throws new light on the regulatory switch through
which the CDK8 subcomplex modulates transcription at Mediator-bound promoters of highly
transcribed genes. We propose that this involves recognition of small RNAs by the PIWI module in
Med13 resulting in a conformational switch that propagates through the mediator complex.



1. INTRODUCTION

The PIWI module, found in the PIWI/AGO superfamily of proteins, is a common functional
denominator for a wide range of biological processes in eukaryotes. These include, but not are
limited to, germline maintenance [1], post-transcriptional gene silencing/RNA interference (RNAi)
[2], chromatin dynamics, regulation of transcription [3, 4], regulation of alternative splicing [5],
DNA elimination in ciliates [6, 7] and suppression of viral infection [8]. It acts by binding a double-
stranded RNA duplex, typically consisting of a targeting RNA strand, referred to as the “guide
strand”, and the targeted RNA strand complementary to the guide strand. Binding of the guide
strand to the target strand results in either the silencing of specific RNA transcripts, as in the case of
transposon silencing during germline maintenance [1, 7] and mRNA silencing during RNAi [2], or is
thought to localize crucial factors for regulating processes like transcription [3] and alternative
splicing [5]. The PIWI module contains an RNase H fold domain with a conserved triad of residues
required for nuclease activity that might participate both in processing the guide strand precursor
as well as cleaving target RNAs complementary to the guide strand [9-16]. On several independent
occasions the PIWI module has lost the RNase H fold catalytic residues; these inactive versions are
still capable of silencing activity by interfering with translation or facilitating degradation of guide

strand-bound mRNAs by other nucleases [17].

While the PIWI/AGO superfamily was initially discovered in eukaryotes, orthologs were also
identified in a wide range of prokaryotes spanning both the archaeal and bacterial superkingdoms
[18, 19]. Despite extensive characterization of these proteins in eukaryotes, the roles of the
prokaryotic PIWI (pPIWI) proteins and the nature of their potential double-stranded nucleotide
targets have remained murky. Recent analysis detected association with genes encoding several
distinct, predicted nucleases, and a general preference for pPIWI genes to be localized in genomic
neighborhoods containing genes belonging to known phage-defense systems. This led to a proposal
advocating a role for pPIWI proteins as components of novel prokaryotic systems involved in
defense against invasive mobile elements [20]. Earlier structural studies observed a tighter binding
propensity for single-stranded DNA relative to single-stranded RNA guide strands in pPIWI
proteins [21, 22]. They also found, in stark contrast to the eukaryotic PIWI protein, the favored
double-stranded substrate for the pPIWI domains to be a DNA-RNA hybrid. These observations
suggested that pPIWI proteins might act on DNA-RNA hybrids.



Given recent increase in available genome data, we surveyed the complete scope of eukaryotic and
prokaryotic PIWI domains to gain a better understanding of their relationship. Here we report the
discovery of two distinctive PIWI families resulting from this survey, the first novel PIWI families to
be discovered in well over ten years. One of these is a previously unrecognized bacterial family
predicted to be a key component of a RNA-dependent restriction system. The second family is
found in the eukaryotic Med13 protein, one of four protein components of the repressive CDK8
subcomplex of the multi-subunit, transcription regulatory Mediator complex. Identification of a
PIWI module in Med13 generates a new testable hypothesis regarding the transcription

modulatory role of the CDK8 subcomplex.

2. RESULTS AND DISCUSSION

2.1 Discovery of two novel PIWI families

The PIWI module as presently defined in the Pfam database [23] consists of two distinct but
functionally tightly coupled domains: an N-terminal three-layered a/f3 sandwich of the
Rossmannoid type, with a four-stranded central 3-sheet reminiscent of the TOPRIM domain and the
B-sheet crossover occurring after the first -strand [24] (see Fig. 1A). This domain contributes
crucial residues that bind the 5’ end of the small RNA guide strand [21, 22, 25-30]. The second
domain is the core RNase H domain, which contributes additional, critical residues for guide strand-
binding and when preserving the nuclease active site also cleaves the target strand. Prior structural
studies on the PIWI module have labeled these two domains as the “MID” and “PIWI” domains,

respectively [9, 31]; a convention we adopt henceforth.

We performed profile-profile comparisons using the HHpred program initiated with both single
sequences and a HMM derived from a multiple alignment of complete PIWI modules as queries
against the complete set of HMMs found in the Pfam and Interpro databases. Interestingly, we
observed statistically significant relationships between the PIWI module and two distinct protein
families defined by the models “domain of unknown function” DUF3893 and Med13_C
(corresponding to a conserved region in the eukaryotic Mediator complex Med13 proteins) from
the Pfam database. For instance, a search initiated with a pPIWI module from Mycobacterium sp.
KMS (gi: 119855142) recovers the DUF3893 profile with p-value=7x10-¢; 94% probability and the
Med13_C profile with p-value=3.4x10-% 90% probability. To further investigate this relationship,

we systematically collected all proteins corresponding to the DUF3893 and Med13_C models using



iterative PSI-BLAST searches. The DUF3893-containing proteins were sporadically distributed
across a wide range of bacterial lineages including firmicutes, actinobacteria, a/3/y-proteobacteria,
cyanobacteria, and chloroflexi. The Med13 proteins are widely distributed across eukaryotes
including most plants, fungi, animals, slime molds, and stramenopiles as well as basal eukaryotes
such as the parabasalid Trichomonas vaginalis and the heterolobosean Naegleria gruberi (see
Additional File 1). In certain lineages additional Med13 paralogs were identified, including those

resulting from a duplication event that occurred early in vertebrates [32].

We then constructed multiple sequence alignments of the proteins matching these modules, used
them to predict secondary structure, and checked for congruence with existing structures of PIWI
modules to determine precisely boundaries of the MID and PIWI domains. This showed that the
DUF3893 and Med13_C models currently present in Pfam imprecisely define the domain
architectures and boundaries within these proteins, notably excluding regions from both the MID
and PIWI domains. Accordingly, we emended the domain boundaries of the DUF3893 and Med13_C
models to completely match the predicted structural elements of the two constituent domains (see
Fig. 1A). Reciprocal HHpred searches initiated with both single sequences and HMMs derived from
the above alignments against a database of HMMs constructed from multiple alignments built using
Protein Data Bank (PDB) chains as seeds confirmed relationships with the PIWI domain: an
emended representative version of the module matching Pfam DUF3893 (gi: 228927677 from
Bacillus thuringiensis) recovers the PIWI module from Archaeoglobus fulgidus, PDB: 2W42, p-
value=6.7x10-5, probability 90%). Iterative sequence searches with PSI-BLAST further confirmed
this relationship: e.g. a search with an emended representative of the module matching Pfam
DUF3893 (gi: 269125748 from Thermomonospora curvatae) recovers a classical pPIWI domain (gi:
295689105 from Caulobacter segnis with e-value=9x10-15, iteration 4). Similarly, a representative of
the emended Med13 module (gi: 393215315 from Fomitiporia mediterranea) recovers a classical

pPIWI module from Pyrococcus furiosus (PDB: 1U04, p-value=2.1x10-4; probability 87%).

2.2 Characterization of the novel bacterial PIWI family

Structural and architectural features
The above-identified bacterial family which overlaps with the Pfam DUF3893 model displayed two
unique, absolutely conserved residues: an arginine and a glutamate (see Fig. 2A). Hence, we refer

to this family as the pPIWI-RE family (prokaryotic PIWI with conserved R and E residues).



Secondary structure predictions indicated that the pPIWI-RE family is distinguished from all
previously known PIWI domains by the presence of an additional a-helical element following the
initial three-stranded beta-meander characteristic of the RNase H fold (see Figs. 1A,2A). We
mapped all strongly-conserved residues found in the pPIWI-RE family on to available structures of
classical PIWI modules and compared those positions to those required for RNase activity or
nucleic acid binding in the latter modules (see Figs. 1B-C, 2A). This showed that the conserved
residues in the PIWI and MID domains of the pPIWI-RE family corresponded well to the positions
known to be critical for nucleic acid-binding in the cognate domains of classical PIWI modules (see
Figs. 1, 2A). In particular, the conserved positions in the MID domain were all clustered in the cleft
that specifically binds the 5’ end of the guide strand. This suggests that, like classical PIWI domains
[33], the pPIWI-RE is likely to recognize small guide strands by anchoring them via the 5’ end. The
arginine and glutamate characteristic of the pPIWI-RE family mapped to the 3-sheet extension,
which is unique to the PIWI-like clade (PIWI and Endonuclease V) of the RNase H fold (see Figs. 14,
2A). We predict that these two residues form a salt bridge across this (3-sheet, which probably
stabilizes its tertiary structure, and maintains a conformation specific to this family that is required
to recognize the guide strand. The RNase catalytic residues are retained only in a subset of the
pPIWI-RE family, suggesting that similar to the classical PIWI family they include both active and

inactive versions.

The classical PIWI modules are typically fused to several N-terminal RNA-binding domains. In
eukaryotic PIWI proteins, in order from the N-terminus, these include the so-called “N-term”
domain implicated in unwinding of the double-stranded guide and passenger strands and also
guide-target duplexes [34] and the single-stranded RNA-binding PAZ domain which interacts with
3’ ends of guide strands. Certain classical PIWI family proteins from kinetoplastids show an OB fold
domain instead of the “N-term” domain. Previously studied prokaryotic PIWI proteins display a
distinct architecture: in lieu of a PAZ domain they feature the so-called APAZ (Analogous to PAZ)
domain suggesting analogous functions for the two domains [20]. Additionally, few pPIWI domains
may contain extreme N-terminal fusions to predicted Sir2-domains [20]. The large N-terminal
region of the pPIWI-RE family contains a distinct, conserved globular domain that partly overlaps
with the Pfam DUF3962 model. Secondary structure predictions indicate that it is likely to adopt a
B-strand-rich fold. It neither showed strong congruence with the secondary structural elements of
the PAZ or APAZ domain nor did it display the well-conserved sequence motifs characteristic of the

PAZ or APAZ domains (see Additional File 1). Furthermore, profile-profile searches did not point to



any relationship between the N-terminal region of the pPIWI-RE family and these domains. Hence,
this N-terminal region is likely to contain at least one distinct globular domain, which might
nevertheless function analogously to the N-terminal domains in the classical PIWI proteins in

mediating additional nucleic acid contacts (see Fig. 2B).

Contextual associations of the pPIWI-RE module

Given the value of contextual information in gleaning insight into the functions of genes [35, 36], we
systematically collected conserved gene neighborhoods and domain fusions for the pPIWI-RE
domains. Consequently, we observed two distinct genomic contexts for the pPIWI-RE genes with
mutually exclusive phyletic patterns (see Fig. 2B): (1) occurrence as a standalone gene (restricted
to several Bacillus species, proteobacteria Magnetospirillum gryphiswaldense, Pseudomonas putida
and Azotobacter vinelandii, and actinobacteria from the genera Streptomyces and
Thermomonospora; Additional file 1). On rare occasions, this version of the pPIWI-RE module might
occur fused to an N-terminal Zincin-like metallopeptidase domain. (2) Occurrence as part of a
widely distributed three-gene neighborhood. Of the two genes that co-occur with the pPIWI-RE
gene we found the first to encode a protein with a conserved restriction endonuclease (REase) fold
domain by using profile-profile comparisons with the HHpred program (probability 94% using gi:
158336201 from Acaryochloris as a query). These proteins also contain a helical domain with a
conserved arginine and Zinc ribbon (ZnR) domain at N-terminus of the REase domain (see Fig. 2B).
Moreover, on at least four different occasions these proteins have also acquired further N-terminal
HTH domains belonging to the LexA, TetR, MerR and a previously uncharacterized clades [37] (see
Fig. 2B). The second gene codes for a Superfamily II (SF-II) DNA helicase. Within SF-II it can be
confidently assigned to the DinG-like clade on the basis of two unique structural features that typify
them; namely, an iron-binding cysteine-rich region found after strand-2 of the helicase domain [38,
39] and a large helical region inserted between conserved helix-4 and strand-5 which precede the
C-terminal P-loop NTPase fold repeat unit characteristic of helicases [40, 41]. The former domain
apparently acts as an intracellular sensor of redox potential to regulate activity of the DinG helicase
domains [42]. The gene order within this triad is strictly conserved with the REase gene coming
first followed by the DinG SF-II helicase and pPIWI-RE genes (see Fig. 2B and Additional file 1).
Furthermore, the three genes have either overlapping or very closely spaced termini suggesting

they are transcribed as a single polycistronic message.

Functional implications of pPIWI-RE coding systems: A novel RNA-dependent restriction system



The widespread but patchy distribution of the above-described pPIWI-RE containing gene-triads
across numerous phylogenetically distant bacteria (Additional file 1) is consistent with this system
being disseminated by horizontal gene transfer (HGT). This pattern is reminiscent of bacteriophage
restriction systems that confer a selective advantage on recipients due to their role in countering
bacteriophage infections [43]. The presence of a gene coding for an REase protein without an
associated methylase gene in the pPIWI-RE containing gene-triads is reminiscent of restriction
systems such as the Mcr systems that target modified invading DNA [44]. The fact that the REase
gene is always the first gene in the operon implies that it would be made before any of the other
products and be available to cleave DNA. Hence, like the REases from the Mcr systems, it should
have some means of specifically targeting non-self DNA rather than suicidally cleaving the cellular
genome upon production. DinG serves as a helicase partner for multiple nuclease domains such as
the RNase T-like and RNase D-like nuclease domains (both of which belong the RNAse H fold) [45-
47]. Hence, it could function as a helicase partner for either the REase or pPIWI-RE or both. Given
that these gene triads are parallel to type [ and type III restriction-modification (R-M) systems in
that they combine REase with helicase genes [48, 49], it is conceivable that the DinG helicase plays a
role comparable to the helicases that translocate the target DNA in those R-M systems. However,
recent studies on DinG-like helicases, which show that it acts on RNA-DNA duplexes in vitro [50]
and R-loops (bubble-like structures forming via displacement of one strand of a DNA double helix
by a complementary RNA strand [51]) in vivo [52], point to further functional complexities. DinG-
like helicases are specifically involved in unwinding of R-loops during replication across active
transcriptional units [52]. Interestingly, DinG-like helicases have also been found to be components
of Type-U CRISPR/Cas systems [53], supporting their action in the context of DNA-RNA hybrid

duplexes.

Taken together, these observations allow us to propose a model that can account for the most likely
activities of all three products of these gene triads (see Fig. 3A). On the basis of the DinG helicase we
posit that the initiating signal recognized by these systems is likely to be a DNA-RNA hybrid
structure. These are known to primarily form during transcription and replication of phages [54] or
plasmid [55, 56] and relatively infrequently during transcription of the endogenous genome [51].
Therefore, specifically targeting these structures could provide an effective means of restricting
transcriptionally active and replicating invasive genomes and their transcripts. In this system the
pPIWI-RE module is likely to be deployed as a sensor for the DNA-RNA hybrid, in a manner

comparable to the classical pPIWI domain for which there is accumulating evidence for



preferential binding to DNA/RNA hybrids [20, 22, 29]. The catalytically active pPIWI-RE modules
might additionally cleave the RNA strand of such hybrid duplexes. Recognition of the DNA-RNA
hybrid by the pPIWI-RE module is likely to recruit the DinG helicase for the unwinding and/or the
translocation of R-loops, which could further provide a suitable dsDNA substrate for cleavage by
the REase domain. Importantly, this hypothesis of DNA-RNA hybrid-directed restriction can explain
why the REase protein, which is the first to be transcribed and translated, is unlikely to act on self
DNA upon its production. The diverse HTH domains, which are occasionally fused to the N-termini
of the REase proteins, could either function as autoregulators of transcription of the gene triad or in

providing sequence specificity during restriction.

In the case of pPIWI-RE genes occurring independently of the above-described three gene
restriction system we found no evidence for the presence of related REase or DinG genes in the
same genomes. A simple interpretation would be that these pPIWI-RE modules function similarly to
the aforementioned versions, but instead of recruiting restriction machinery they function by
themselves. It is possible in these cases they modulate gene expression by cleaving transcripts,
physically interfering with transcription (an echo of the action of eukaryotic PIWI proteins), or

blocking the release of transcripts from the template DNA [3, 57].

2.3 The PIWI module in eukaryotic Med13

Structural and architectural features of the MedPIWI module

Given the presence of this PIWI module in the Med13 subunit of the Mediator complex, we
hereafter refer to it as the MedPIWI module. An inspection of the multiple sequence alignment of
the novel eukaryotic family revealed extensive conservation at the positions crucial for nucleic acid-
binding in the classical PIWI module including residues interacting with the 5’ end of the guide
strand in the MID domain (see Figs. 1, 4A). However, this family shows certain distinctive features:
1) absence of the first catalytic aspartate/glutamate found near the C-terminus of strand 1 of the
RNase H fold’s core [3-sheet. 2) The second conserved residue of the catalytic triad, located at the C-
terminus of strand-4 of the RNase H fold, is absent with no identifiable compensatory residues. 3)
Another charged residue contributing directly to the active site from the C-terminal segment of the
final helix of the RNase H fold is also absent (see Fig. 4A). 4) Its RNase H fold shows a reasonably

well-conserved aspartate in the loop between strand-1 and strand-2, which is suitably positioned to



contact the bound nucleic acid, based on comparisons to classical PIWI domains [58]. 5) The
MedPIWI RNase H fold also shows a near-absolutely conserved aspartate at the C-terminus of
strand 2 (see Fig. 4A) that is unlikely to have any role in nucleic acid substrate recognition. Taken
together, these observations suggest that none of the MedPIWI modules might be catalytically
active. However, they are likely to bind double-stranded nucleic acid substrates, just as the classical

PIWI modules.

The MedPIWI modules are distinguished from all other PIWI modules by the presence of extensive
disordered regions, often occurring as lineage-specific inserts within both the MID and PIWI
domains and also in between the two (indicated by numbers in Figure 4A). This family is also
distinguished by a small domain consisting of a likely beta-hairpin followed by a single alpha-helix
located immediately N-terminal to the MID domain and might be compared to the small “linker”
domains observed in classic PIWI families [20]. Beyond this domain is the Med13-N module
corresponding to the Pfam model Med13_N (see Fig. 4B). The conserved core of this region is
predicted to adopt an a+f3 structure with a prominent stretch of 6-7 contiguous 3 strands which
could adopt a barrel or sandwich-like fold (Additional file 1). This module is present in all
eukaryotic Med13s except those from Entamoebidae, where it appears to have been displaced or
has degenerated. Thus, the Med13-N module was likely associated with the MedPIWI even in the
stem eukaryotes, and is comparable in its location, though not necessarily in function, to the N-
terminal domains, such as PAZ, APAZ and that found in the pPIWI-RE family (see above). Some
additional lineage-specific globular domains might be present along with an extensive disordered
region in the linker connecting the Med13-N module to the rest of the protein. These include a
potential Zn-binding domain with two CxC motifs (where “C” is a cysteine residue and “x” is any
residue) in animals and other unrelated modules in plants and fungi (see Fig. 4B, Additional File 1).
The size and frequency of the lineage-specific inserts and disordered regions roughly corresponds
to the total number of units comprising the Mediator complex in a given lineage [32]. Thus, they
might represent secondary adaptations for increased inter-subunit contacts within the Mediator

complex.

Partners and physical interactions of Med13: functional implications for the MedPIWI module
in eukaryotic transcription regulation
The Mediator complex, along with several basal or general transcription factors, is part of the

Preinitiation Complex (PIC), which is needed for transcription at promoters of genes transcribed by



RNA polymerase II (pol II) in eukaryotes [59, 60]. The Mediator complex has two basic forms (see
Fig. 3B): 1) the core Mediator complex, which is a strong transcriptional coactivator [61] and
occupies promoters across the genome [62, 63] and 2) the Mediator-CDK8 complex, which usually
has a negative regulatory role and while found to transiently associate across all promoters,
associates strongly with only a subset of genes that typically show higher expression levels [62-66].
The latter complex is characterized by the addition of a four subunit subcomplex, CDK8, which, in
addition to the MedPIWI-containing Med13, also contains Med12, cyclin C, and the CDK8 kinase.
Negative regulation by the CDK8 subcomplex appears to utilize multiple independent, but
apparently synergistic, actions of its distinct subunits (see Fig. 3B). The cyclin/kinase pair of the
subcomplex phosphorylates the pol II C-terminal tail disrupting the association between pol Il and
the core Mediator complex [67]. It might also phosphorylate cyclin H in the TFIIH complex and
inhibit activation of translation by the latter complex [68]. However, previous studies have shown
that negative regulation of transcription by the CDK8 subcomplex also occurs independently of the
CDK8 kinase activity: the interaction between the CDK8 subcomplex and the core Mediator acts as a
modulatory “switch” that allosterically affects the core Mediator-pol II interaction [69, 70] and
determines the shift between transient and stable CDK8 subcomplex promoter occupancy. This
switch is believed to be dependent on Med12 and Med13 [70, 71], although the exact mode of their
action remains murky. In this regard, recent studies utilizing an in vitro chromatin-based
transcriptional system demonstrated that Med13 is critical for physically linking the CDK8
subcomplex to the core Mediator complex and is specifically required to repress previously

activated promoters by barring re-association of a pol Il enzyme with the PIC [70].

Given these studies our discovery of a PIWI module in Med13 provides a previously unexplored
vista to investigate the mechanism of transcriptional modulation by the CDK8 subcomplex (see Fig.
3B). As the MedPIWI module displays the conserved features related to binding double stranded
substrates (see above, Figs. 1B-C, 4A), we posit that this activity is central to the molecular switch
that modulates the core Mediator-pol Il interactions. We predict two plausible candidates for the
substrate oligonucleotide bound by the MedPIWI modules that are consistent with published
laboratory studies: 1) it is conceivable that the MedPIWI module retained the ancestral ability to
bind DNA-RNA hybrid duplexes, a feature that the ancestral eukaryotic PIWI modules would have
presumably possessed when they were acquired from the prokaryotic progenitors. DNA-small RNA
hybrids could form close to the transcription start site (TSS) from the small RNA byproducts of

polymerase stalling or backtracking [72, 73]. Indeed, such small transcripts have been detected



(commonly referred to as TSSa [74] or tiRNA transcripts [75]) in several global deep-sequencing
datasets across a range of animal species [76] and even in association with classical PIWI domains
[77]. These could either re-associate with DNA opened as part of the transcriptional bubble formed
during re-initiation events or remain associated with open DNA in the wake of repeated pol Il
passages. This proposal has the attractive feature of explaining the preferential association of
Med13 with highly transcribed genes [62-66, 70] because such genes are known to be enriched in
small TSS-associated transcripts [75], thereby increasing the chances of formation of DNA-RNA
hybrids substrates for the MedPIWI module. The observation that the CDK8 subcomplex
association occurs only after initiation of at least a single round of transcription by pol II following
PIC assembly [70] also suggests its association might require the availability of previously-
transcribed RNA byproducts. Another potential source for small RNAs that could form DNA-RNA
hybrids is the small processed antisense transcripts that have been found to be associated with the
promoter sites of transcriptionally active genes [3]. 2) Alternatively, like most characterized
eukaryotic PIWI modules, the MedPIWI module might bind dsRNA substrates. In this case its action
can be compared to the classical eukaryotic PIWI protein AGO2, which has been shown to regulate
the positioning of pol Il while binding sense-antisense RNA duplexes derived from transcriptionally
active genes [3]. Interestingly, these antisense small RNA-AGO2 complexes increase in abundance
concomitant with transcriptional activation upon stimuli such as heat shock [3]. It is possible that
the MedPIWI module acts in a comparable manner to associate with such promoter-derived small

RNAs that could form dsRNA duplexes during active transcription.

In conclusion, we hypothesize that the modulatory switch mediated by the CDK8 subcomplex
probably depends on the ability of the MedPIWI module to recognize small transcripts associated
with active promoters that form either DNA-RNA or dsRNA duplexes. This binding induces a
conformational change that propagates through the rest of the complex to allosterically impact the
interaction of the Mediator with pol II. Binding of duplexes by the MedPIWI module might also
influence the deployment of the additional layers of control that depend on the CDK8 subcomplex,
such as the activity of the CDK8 kinase [67, 68] and Med12-mediated histone H3K9 SET domain
methyltransferase (G9a) recruitment [71] (see Fig. 3B). Intriguingly, in a small number of cases,
association of the CDK8 subcomplex with the core Mediator results in the Med13- and Med12-
dependent transcriptional activation rather than repression [78, 79]. While this manuscript was
under review, a study was published demonstrating the role of enhancer-associated long non-

coding RNAs (IncRNAs) in facilitating this process of activation of transcription by the CDK8



subcomplex along with the core mediator [80] (see Fig. 3B). It was demonstrated that in animals
these activating IncRNAs interact with the Med12 subunit of the CDK8 complex and cause it to
catalyze Histone H3 serine 10 phosphorylation rather than the above-mentioned negative
regulatory phosphorylations of Cyclin H and the RNA polymerase C-terminal tail. H3510
phosphorylation has a positive regulatory role probably by inhibiting the repressive H3K9
methylation among other actions. We suspect that interaction with these enhancer-derived
IncRNAs is unlikely to be the primary function of the MedPIWI module because it is conserved
across eukaryotes and appears to be required for actions of the CDK8 complex beyond activated
transcription. However, we cannot rule out that the IncRNA might interact with processed small
RNAs to form duplexes that might be recognized MedPIWI module to regulate transcription in

certain conditions.

3. EVOLUTIONARY CONSIDERATIONS

The new PIWI families reported here also offer an opportunity to reassess the natural history of the
PIWI/AGO superfamily. The pPIWI-RE family shows a relatively smaller spread across the
prokaryotic tree (see Additional File) compared to the classical pPIWI proteins [20]. Hence, it is
possible that pPIWI-RE descended from an RNase-active classical pPIWI module in bacteria and
was subsequently dispersed to diverse lineages via HGT. The multiple independent losses of the
RNase H fold catalytic residues in the pPIWI-RE family are comparable to the classical PIWI
modules [20]. Thus, not just active processing of RNA, but also non-catalytic binding of duplexes
containing RNA appears to have been widely used across the PIWI/AGO superfamily. Indeed, this
function appears to have been the dominant theme in the case of the MedPIWI family. The phyletic
patterns of Med13 are closely correlated with the three other subunits of the CDK8 complex. They
are present in several basal eukaryotes and are widespread across the eukaryotic tree strongly
supporting the presence of a complete CDK8 complex in the last eukaryotic common ancestor
(LECA). Thus, the CDK8 subcomplex and an ancestral version of the core Mediator complex appear
to have been in place by the LECA, suggesting that antagonistic regulatory interactions of these

complexes was a feature of transcription regulation in the common ancestor of extant eukaryotes.

Earlier studies had indicated that at least one member of the classical PIWI family was already
present in the LECA [85]. Prior to LECA, in the eukaryotic stem lineage, this PIWI protein appears to
have undergone a duplication giving rise to a version with a dedicated role in transcription

regulation and a second version primarily involved as a standalone protein in diverse processes



involving small non-coding RNAs. The former version appears to have functionally associated with
the other emerging subunits of the CDK8 complex with a corresponding rapid divergence in
sequence. At least in the latter version there appears to have been a specificity shift towards dsRNA
from the likely ancestral pPIWI preference for binding DNA/RNA hybrid duplexes [20, 22, 29]. The
classical PIWI family is also widely conserved across archaea [19], suggesting that the stem
eukaryotes could have possibly inherited the ancestral PIWI protein directly from their archaeal
progenitor. Given the functional connections now known or inferred across the PIWI/AGO
superfamily (each of the two families discussed here and the classical PIWI proteins) to regulation
of transcription, it is conceivable that even in archaea (and possibly other prokaryotes) PIWI
proteins function in transcription regulation, beyond the proposed role in defense against genomic
parasites. If this were the case, then the two primary eukaryotic versions merely reflect partitioning
of the ancestral roles into distinct proteins. Thus, our identification of a novel eukaryotic PIWI

family could also have implications for the functions of the prokaryotic PIWI domains.

GENERAL CONCLUSIONS

The two novel families of PIWI modules described here are the first such discoveries since the
initial characterization of the PIWI/Argonaute family in eukaryotes and their close prokaryotic
counterparts over a decade ago [18, 86, 87]. While considerably divergent from these earlier-
characterized versions, both families are predicted to bind double- stranded substrates based on
the strong conservation residues at positions corresponding to nucleic acid binding sites in the
classical PIWI modules in both of the novel families (see Figs. 1, 2, and 4). Moreover, their predicted
functions fit within the spectrum of previously observed functional roles for different members of
the PIWI superfamily. Thus, despite the considerable divergence from the classical PIWI family at
the sequence level the new families appear to have maintained the characteristic ability of this
clade of RNase H fold proteins to operate on RNA-containing duplexes. Nevertheless, the predicted
functions of the two newly described families present some previously unobserved features. The
pPIWI-RE family offers the first example for a potential RNA-dependent restriction system in
prokaryotes that is distinct from the previously characterized CRISPR/Cas-type systems [53]. In
particular it presents some parallels to the Type-II CRISPR/Cas systems which combine a RNase H
fold nuclease with a HNH endoDNase that is also found in several restriction systems [53]. Thus, it
emerges as the first clear example of a PIWI family member directing and coordinating a DNA- and
RNA- based defensive response against genomic parasites in bacteria. This system could potentially

be developed as a reagent to cleave target DNA using a RNA guide. Our prediction implicating the



MedPIWI family in recognition of RNA-containing duplexes offers an entirely new mechanism for
the action of the CDK8 subcomplex both in terms of the modulation of transcription at the
promoters of highly expressed genes and providing the first delineation of the criterion underlying
the transition from transient CDK8 subcomplex co-occupancy at sites of core Mediator occupancy
to sustained CDK8 subcomplex association resulting in repressive activity [62] (see Fig. 3B). This
research also further fuels the broader emerging theme implicating ncRNAs in modulation of
transcription at sites of initiation [3, 80]. This hypothesis could be investigated via a combination of
ChIP-seq experiments on CDK8 subcomplex members and MedPIWI module immunoprecipitation-

sequencing.
MATERIALS AND METHODS

[terative profile searches with the PSI-BLAST [88] and JACKHMMER [89] programs were used to
retrieve homologous sequences in the protein non-redundant (NR) database at the National Center
for Biotechnology Information (NCBI). For most searches a cut-off e-value of 0.01 was used to
assess significance. In each iteration, the newly detected sequences that had e-values lower than the
cut-off were examined for conserved motifs to detect potential homologs in the twilight zone.
Similarity-based clustering was performed using the BLASTCLUST program
(ftp://ftp.ncbi.nih.gov/blast/documents/blastclust.html) to cluster sequences at different
thresholds. Multiple sequence alignments were built using the Kalign [90] and MUSCLE [91]
programs, followed by manual adjustments based on profile-profile alignment, secondary structure
prediction and structural alignments. Consensus secondary structures were predicted using the
JPred program [92]. Remote sequence similarity searches were performed using profile-profile
comparisons with the HHpred program [93]. Gene neighborhoods were extracted and analyzed
using a custom PERL script that operates on the Genbank genome or whole genome shotgun files.
The protein sequences of all neighbors were clustered using the BLASTCLUST program to identify
related sequences in gene neighborhoods. Each cluster of homologous proteins was then assigned
an annotation based on the domain architecture or shared conserved domain. A complete list of
Genbank gene identifiers for proteins investigated in this study is provided in the Additional File 1.
Structure similarity searches were conducted using the DALIlite program [94] and structural

alignments were generated by means of the MUSTANG program [95].
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FIGURE LEGENDS

Figure 1. Spatial conservation of active site and nucleotide-binding residues in the MID and
PIWI domains. (A) Topology diagram depicting the structural features and critical binding regions
in the domains. MID and PIWI designations are provided at the top of the diagram. The 3-sheet
extension unique to the PIWI clade of the RNase H fold is labeled and shaded in grey. Locations of
key active site residues are marked with green lines. Active site and general regions of nucleotide-
binding are shaded and labeled. (B) Cartoon renderings of active site and nucleotide binding
regions of a solved PIWI domain structure in complex with double-stranded nucleotide
guide/passenger strands (PDB: 3HO1 [30]). Residues in the structure involved in guide strand
binding with cognate conserved residues in pPIWI-RE and MedPIWI families are colored in yellow.
The guide strand is colored in tan, passenger strand in light blue.

Figure 2. Multiple sequence alignment and contextual information of the pPIWI-RE pPIWI-RE
family. (A) An alignment along with representatives of the classical PIWI module is shown. Regions
of poor conservation are replaced with numbers representing the length of the excised region. The
consensus sequence is provided on the bottom line. Strongly-conserved residues are shaded in red
and colored in white. Residues involved in catalytic RNase H activity are shaded in red and colored
in yellow. Columns in alignment are color-coded based on conservation of shared chemical
properties: yellow, hydrophobic/aliphatic (h/1); green, small/tiny (s/u); purple, charged (c/+/-);
blue, polar (p); orange, hydroxyl group-containing (0); grey, large (b). Conserved residues involved
in nucleotide binding across both the classical and pPIWI-RE PIWI modules or residues
contributing to nuclease activity are denoted above the appropriate column in the alignment by “*”
and “*”, respectively. The predicted salt bridge-forming arginine and glutamate residues unique to
the pPIWI-RE module are denoted by “&”. Residues which may be conserved in classical PIWI
modules but not present in the pPIWI-RE module are denoted by “%”. Boundaries of the MID and
PIWI domains are noted above the secondary structure prediction. Sequences in the alignment are
labeled to the left of the alignment with gene name, organism abbreviation, and gene identifier
number (gi number), demarcated by underscores. (B) Representative domain architectures and
conserved gene neighborhoods involving the pPIWI-RE module. Genes within a conserved
neighborhood are depicted as arrows with the direction of the arrowhead pointing in the 5’ to 3.
Labels below each architecture or neighborhood provide the gene name, organism abbreviation,
and gi number for a representative protein. The characteristic C-rich and helical regions of the
DinG-type helicase are represented by yellow lettering and purple coils, respectively. Domain
abbreviations: ZR, zinc ribbon; X, conserved globular region found N-terminal to MID and pPIWI-RE
domains; Y, conserved, largely a-helical domain with conserved arginine residue found N-terminal
to ZR and REase domains; Z, largely a-helical domain found N-terminal to DinG-type helicase.
Organism abbreviations may be found in Additional File 1.

Figure 3. Schematic representation of predicted functions of the pPIWI-RE and MedPIWI
domains. (A) pPIWI-RE domain associates with DNA-RNA hybrid structure present during R-loop
formation in an invasive DNA element, resulting in recruitment of the DinG helicase and
endoDNAse REase domains. (B) Regulation of the core Mediator complex via the CDK8 subcomplex



is depicted, beginning at left with 1) simplified representation of the PIC, poised for initiation of
transcription. 2) In absence of CDK8 subcomplex, the core Mediator complex recruits pol Il and
transcription is initiated. 3) Kinase activity-independent repression of transcription: the CDK8
subcomplex (depicted as yellow oval) transiently associates with core Mediator complexes across
the genome [62]; availability of a small RNA binding substrate for the MedPIWI domain in the
Med13 component of the CDK8 subcomplex triggers shift from transient association to repressive
role of CDK8 subcomplex, triggering conformational switch in the Mediator-CDK8 combined
complex which blocks pol Il re-association. 4) IncRNA-mediated transcriptional activation:
association of Med12 with activating IncRNA transcribed and looping from distal enhancer element
(depicted as box colored in green) facilitates CDK8 kinase-mediated phosphorylation of
transcriptional-activating histone H3 serine 10, resulting in association of pol Il and transcriptional
activation [80]. 5) Additional layers of CDK8 subcomplex-mediated transcriptional repression:
CDKS8 kinase phosphorylates TFIIH [68] or C-terminal domain of pol Il [67] and Med12-mediated
recruitment of SET domain methyltransferase (G9a) methylates histone H3 lysine 9 [71], all
resulting in repression of transcription. Abbreviations: P, phosphorylation event; Me, methylation
event; S, switch resulting in conformational change.

Figure 4. Multiple sequence alignment and domain architectures of the MedPIWI family. (A)
Multiple sequence alignment with representatives of the classical PIWI module is shown.
Organization, numbering, labeling, consensus abbreviations, and coloring of the alignment are as
described in the legend to Figure 2. Conserved residues involved in nucleotide binding across both
the classical and MedPIWI modules are denoted above the appropriate column in the alignment by
“*”_Residues which may be conserved in classical PIWI modules but not in the MedPIWI module are
denoted by “%”. (B) Representative domain architectures of the MedPIWI module. The small green
box immediately upstream of the MID domain represents the conserved, small “linker” domain.
Other unlabeled domains represent potential lineage-specific domains while CxC refers to the
animal-specific, potential zinc-binding domain (see Additional File 1). Organism abbreviations may
be found in Additional File 1.
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