Supplementary material.

Figures

[image: image1.emf]

A

B

C

D E F G

I

H

5’

3’

Fig. S1. Example of a secondary structure containing different types of loops: A - stacked loop, B - bulge, C – simple bulge (0x1), D – multi-branched loop, E – simple 1x1 internal loop, F – simple 1x2 internal loop, G – simple 2x2 internal loop, H – internal loop, I – hairpin loop.
[image: image2.emf]f

Len

y = 1.06*Ln(x) + 0.1

R

2

 = 0.9985

0

0.5

1

1.5

2

2.5

3

3.5

4

16111621263136

Length

D

G

Fig. S2. The graph of function fLen(t) according to Mathews et al. (1999) (dotted line) and its logarithmic approximation y = 1.06*ln(x) + 0.1 (solid line). In Mathews et al. (1999) the values of fLen(t) are defined as c1 + c2*log(t/30) for t > 30.

	
	
	Y = j
	
	
	
	
	
	
	
	
	
	
	
	
	

	G
	15
	
	
	+
	
	
	
	
	+
	+
	
	+
	
	+
	
	+
	

	G
	14
	
	
	 +
	
	
	
	
	+
	+
	
	+
	
	+
	
	+
	

	U
	13
	
	
	
	 +
	+
	+
	+
	
	
	+
	
	+
	
	+
	
	

	G
	12
	
	
	
	
	
	
	
	+
	+
	
	+
	
	+
	
	+
	

	A
	11
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	G
	10
	
	
	
	
	
	
	
	+
	+
	
	+
	
	+
	
	+
	

	A
	9
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	C
	8
	
	
	
	
	
	
	
	
	
	
	
	+
	
	
	
	

	C
	7
	
	
	
	
	
	
	
	
	
	
	
	+
	
	
	
	

	A
	6
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	C
	5
	
	
	
	
	
	
	
	
	
	
	
	+
	
	
	
	

	G
	4
	
	
	
	
	
	
	
	
	
	
	
	
	+
	
	+
	

	C
	3
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	A
	2
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	+
	

	U
	1
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	X = L–i+1

	
	
	15
	14
	13
	12
	11
	10
	9
	8
	7
	6
	5
	4
	3
	2
	1
	

	
	
	G
	G
	U
	G
	A
	G
	A
	C
	C
	A
	C
	G
	C
	A
	U
	

Fig. S3. Dot–matrix representation of possible base pairings within the secondary structure of an RNA molecule with sequence “UACGCACCAGAGUGG” (L=15). A putative pair (p, q) is represented by ‘+’ at position (L–p+1, q), as if we place one copy of RNA sequence along X axis from right to left and the other one along Y axis from bottom to top. The pairings which belong to set ROW10 are boldfaced.

	RNA sequence
	RNA Length
	Max length of a candidate list
	Average length of a candidate list

	 NM_207436
	1597
	26
	2.05

	 NM_173589
	3222
	20
	1.97

	NM_003622
	6076
	20
	2.03

	NM_032969
	9146
	14
	2.11

	NM_014611
	17400
	14
	1.99

Fig. S4. Lengths of candidate lists within M-algorithm (see sub-section 2.2) for different lengths of RNA.

Algorithms

algorithm OptimalRNA(input: RNA[1..L])
begin

// 1. Pre–processing

 Initialize the data structures

// 2. The main loop

 for all B from 1 to L do begin

2.1.
 HairpinRow(B);

2.2. SimpleLoopRow(B);

2.3. InternalLoopRow(B);

2.4. Multi-branchLoopRow(B);

2.5. OptimalLoopRow(B);

 end

// 3. Post–processing

Restore the optimal RNA secondary structure from the data obtained

End

Algorithm S1. Framework of the algorithm finding the optimal secondary structure of an RNA sequence. At each of the steps 2.1 – 2.5, the function processes the row ROWB. For each nucleotide pair (A, B) (ROWB the function finds the optimal structure with the most external (closing) pair (A, B), where (A, B) closes the loop of the corresponding type. For example, Multi-branchLoopRow(B) corresponds to the structures where the external loop is a multi-branch loop and SimpleLoopRow(B) corresponds to the structures having external simple loop, e. g. a stacking pair, a bulge, or an internal loops with small distances between its opening and closing base pairs. The subject of our main interest is function InternalLoopRow(B), which finds the optimal internal loops of general form, i.e. having fragments of unpaired bases of length 3 or more. Function Multi-branchLoopRow(B) finds the optimal structure for each fragment [A, B] (not necessarily containing the base pairing (A, B)), in addition to finding the optimal structures having external multi-branch loop. Function OptimalLoopRow(B) finds, for each pair (A, B) (ROWB, the best structure with the closing pair (A, B) as the structure having the minimal energy from the four structures obtained in lines 2.1 – 2.4.

algorithm InternalLoopRow(input: B){

begin

 for all B from 1 to L do begin

 InternalLoopMainRow(B); // Computes GMain(A, B) for all pairs (A, B) (ROWB
 InternalLoopStripRow(B); // Computes GStrip(A, B) for all pairs (A, B) (ROWB
 InternalLoopFinalRow(B); // For all pairs (A, B) (ROWB computes

 // GIStruct(A, B) =

 // = min{ base_value + GMain(A, B), GStrip(A, B) }

 end

end

Algorithm S2. Function InternalLoopRow(B).

(a)

algorithm OptimalRNA_G(input: RNA[1..L])

array VAR_CANDIDATESTRIP[2*L] of list of candidate;

begin

// 1. Pre–processing

 for all r from 3 to 2*L–1 do begin

 set VAR_CANDIDATESTRIP[r] to empty list;

 end

// 2. The main loop

 for all B from 1 to L do begin

2.1.
HairpinRow(B);

2.2.
SimpleLoopRow(B);

2.3.
InternalLoopRow_G(B);

2.4.
MultipleLoopRow(B);

2.5.
OptimalLoopRow(B);

2.6.
UpdateCandidate(B);

 end

// 3. Post–processing

Restore the optimal RNA secondary structure from the data obtained

end

(b)

algorithm InternalLoopStripRow_G(input: B){

// Computes GStrip(A, B) for all (A, B) (ROWB;

global var

float VAR_STRIPWORK[U];

array VAR_CANDIDATESTRIP[2*L] of list of DAT_CANDIDATE;
local var

DAT_CANDIDATE C;

begin

for all base pairs (A, B) from ROWB in descending order by A do begin

r = A+B;

C = GetFirst(r);

VAR_STRIPWORK[A, B] = C.dG + fLen((B–A) – (C.y –C. x +2));

end

end

Algorithm S3.(a) Framework of the algorithm finding the optimal secondary structure of an RNA molecule, modified to implement the function InternalLoopRowStrip_G. The call UpdateCandidate(B). line 2.6, updates lists VAR_CANDIDATESTRIP[r] from Candr,B to Candr,B+1 according to newly calculated values G(A, B) for all (A, B) (ROWB. The other functions (lines 2.1 – 2.5) give the same results as ones on Supplementary Figure S2.

(b) Function InternalLoopStripRow_G. The function GetFirst(r) gets the 1st element of the list VAR_CANDIDATESTRIP[r] = CANDr,B . The data structure DAT_CANDIDATE describes one element of the candidate list x, y and dG, are the components of DAT_CANDIDATE (see “Description of G–algorithm”).

algorithm UpdateCandidate(input: B){

// Updates value VAR_CANDIDATESTRIP[r] from Candr,B to Candr,B+1.

global var

array VAR_CANDIDATESTRIP[2*L] of list of DAT_CANDIDATE;

local var

array POINTER[2*L] of pointers to DAT_CANDIDATE;

DAT_CANDIDATE C;

begin

1. // Work out sets { (r–B–t, B) | t = 0, …, width–1},
 // see (2.1), Supplementary section 3
1.1. // Pre–processing of the 1st elements of old candidate lists

for all base pairs (A, B) from ROWB in ascending order by A do begin

 for all t from 0 to width–1 do begin

 r = A+B–t;

1.1.1 // Set POINTER[r] to the 1st element of VAR_CANDIDATESTRIP[r]
 POINTER[r] = VAR_CANDIDATESTRIP[r];

1.1.2 // Delete 1st element of VAR_CANDIDATESTRIP[r] if it is obsolete

 GetFirst(r);

 if (Tmax (B) then DeleteFirst(r);
1.2. // Processing of new candidates
for all base pairs (A, B) from ROWB in ascending order by A do begin

 for all t from 0 to width–1 do begin

 r = A+B–t;

1.2.1 IncludeCandidate(A, B, r);

 end

end

2. // Work out sets {(r–B, B–t) | t = 1, …, width–1},
 // see (2.1), Supplementary section 3
2.1. // Pre–processing of the 1st elements of old candidate lists

for t=0; t < width; t++ do begin

 B1 = B–t;
 for all base pairs (A, B1) from ROWB1 in descending order by A do begin

 r = A+B1;

2.1.1 // Set POINTER[r] to the 1st element of VAR_CANDIDATESTRIP[r]
 POINTER[r] = VAR_CANDIDATESTRIP[r];

2.1.2 // Delete 1st element of VAR_CANDIDATESTRIP[r] if it is obsolete

 GetFirst(r);

 if (Tmax (B) then DeleteFirst(r);
2.2. // Processing of new candidates

for t=0; t < width; t++ do begin

 B1 = B–t;
 for all base pairs (A, B1) from ROWB1 in descending order by A do begin

 r = A+B1;

2.2.1 IncludeCandidate(A, B, r);

 end

end

end.

Algorithm S4. Function UpdateCandidate.

algorithm IncludeCandidate(input: u, v, r, B)

// Tries to include the pair (u, v) to VAR_CANDIDATESTRIP[r] within update

// of the list VAR_CANDIDATESTRIP[r] from Candr,B to Candr,B+1.

// See section ”Algorithm:3.Function InternalLoopStripRow and candidate lists”.
 var global

array VAR_CANDIDATESTRIP[2*L] of list of DAT_CANDIDATE;

array POINTER[2*L] of pointers to list of DAT_CANDIDATE;

var local

DAT_CANDIDATE C; // an element of VAR_CANDIDATESTRIP[r],

 // its components are C.x, C.y, C.dG, C.Tmin, C.Tmax

integer NEWmin, NEWmax;

 float G, E1, G1;
begin

G = G r(u, v); // See (4), sub-section 2.1

// 1. Find putative successor of (u, v) in VAR_CANDIDATESTRIP[r],

// i.e. the first element C with v–u (C.y – C.x; see Lemma 3.2, Supplementary section 4.

SetPointerToNext(u, v, r);

// 2. Kill obsolete successors

while (POINTER[r] (NIL) do begin

 C = GetCurrent(r);

 E1 = C.dG + fLen((2*C.Tmax – r) – (C.y – C.x + 2));

 G1 = G + fLen((2*C.Tmax – r) – (v – u + 2));

 if (G1 (E1) then

 DeleteCurrent(r); // POINTER[r] moves to the next element

 else break;

 end;

// 3. Kill obsolete predecessors

POINTER[r] = Prev(POINTER[r]);
while (POINTER[r] (NIL) do begin

 C = GET_CURRENT(r);

 E1 = C.dG + fLen((2*C.TMin – r) – (C.y – C.x + 2));

 G1 = G + fLen((2*C.TMin – r) – (v – u + 2));

 if (G1 (E1) then

 DeleteCurrent(r); // POINTER[r] moves to the next element

 POINTER[r] = Prev(POINTER[r]);
 else break;

 end;

// 4. Calculate NEWmin i.e. Tmin for (u,v)

// POINTER[r] points to the predecessor of (u, v)

C = GetCurrent(r);

if (C = NIL) then NEWmin = B+1 else begin

 4.1. NEWmin = min{C.Tmax+1, {t([C.Tmin, C.Tmax] |G+ fLen((2*t–r) – (u–v+2)) >

 > C.dG + fLen((2*t – r) – (C.y – Cix + 2))

 } }

 if (NEWmin (C.Tmax) then begin

 SetCurrentTmax(r, NEWmin–1);

 end

end

// 5. Calculate NEWmax i.e. Tmax for (u,v)

POINTER[r] = Next(POINTER[r]);
C = GetCurrent(r);

if (C = NIL) then NEWmax = L else begin

 5.1. NEWmax = max{C.Tmin–1, {t([C.Tmin, C.Tmax] |G+ fLen((2*t–r) – (u–v+2)) >

 > C.dG + fLen((2*t – r) – (C.y – Cix + 2))

 }}

 if (NEWmax (C.Tmin) then begin

 SetCurrentTmin(r, NEWmax+1);

 end

end

// 6. Insert (u, v, G)
if (DN–1 < DP+1) then STOP ;

InsertBeforeCurrent(r, u, v, G, DP+1, DN–1) ;
end.
Algorithm S5. Function IncludeCandidate. The function SetPointerToNext(u, v, r) moves Pointer[r] to the first element C in VAR_CANDIDATESTRIP[r] with v–u (C.y – C.x; see Lemma 3.2, Supplementary section 4. The function GetCurrent(r) extracts the element Current(r) of VAR_CANDIDATESTRIP[r], i.e. one corresponding to the value of POINTER[r]. The function DeleteCurrent(r) deletes the element Current(r) from the list VAR_CANDIDATESTRIP[r] and moves POINTER[r] to the next element. Functions SetCurrentTmin and SetCurrentTmax change the values .Tmin and .Tmax of Current(r). Note that in 4.1 NEWmin > C.Tmin, otherwise the element C would be deleted at step 3. Analogously because of step 2, NEWmax < C.Tmax in line 5.1

Boolean function SetPointerToNext(input: u, v, r,B)

// Finds putative predecessor of (u, v) in VAR_CANDIDATESTRIP[r],

// i.e. the last element C with v–u (C.y – C.x; see Lemma 3.2, Supplementary section 4.

var global

array VAR_CANDIDATESTRIP[2*L] of list of DAT_CANDIDATE;

array POINTER[2*L] of pointers to list of DAT_CANDIDATE;

var local

DAT_CANDIDATE C; // elements of VAR_CANDIDATESTRIP[r]

 // its components are C.x, C.y, C.dG, C.Tmin, C.Tmax

float G;

begin

G = Gr(u, v); // // See (4), section “Algorithm:1.Finding internal loops during
 // construction of the optimal RNA structure”

C = GetCurrent(r);
while (v–u < C.y – C.x) do begin

 if (G (C.dG) then return (FALSE);

 POINTER[r] = Next(POINTER[r]);
 if (POINTER[r] = NIL) then return (TRUE);
 else C = GetCurrent(r);

end

if (v–u = C.y–C.x & G = C.E) then return (FALSE);
Algorithm S6. Function SetPointerToNext; the candidate lists are implemented as ordinary lists. The function returns FALSE if the pairing (u, v) (Candr,B+1 because of condition 1.1 of Lemma 3.2, see Supplementary section 4.

Section 1. Sparse dynamic programming algorithms for the functions InternalLoopMainRow and InternalLoopStripRow

Calculation of GMain(A, B): general description of the algorithm

To calculate the values GMain(A, B) for all pairs (A, B) (ROWB we use the divide and conquer algorithm. Let Z(p, q), where 1 (p (q (L, denote the set of base pairs:

Z(p, q) = ROWp (… (ROWq = {(x, y) | (x, y) (U & p (y (q}

The core problem to be solved (with proper input data) on each step of the algorithm is the following

Problem S2. Input:

1) integers p, k, q; 1 (p < k (q (L;

2) two sets of base pairs P (Z(p, k–1) and Q (Z(k, q);

3) real weights F(x, y) for all (x, y) (P.

Goal: for all (A, B) (Q, to calculate:

 FPARTIAL(A, B; P) = min{F(x, y) + fLen((B–A) – (y–x+2)) | (x, y) (P}
 (1.1)

The algorithm referred to as E–algorithm below is a modification of the algorithm presented in Eppstein et al. (1992), section 3. The only difference between the E–algorithm and the original algorithm is an explicit description of forward and backward zones, introduced to fit the framework of the OptimalRNA algorithm, see Supplementary, algorithm S1.

On the pre–processing step of the main algorithm OptimalRNA, see Supplementary, algorithm S1, line 1, we assign to each row B integers pB and qB, where pB < B (qB. Sets Z(pB, B–1) and Z(B, qB) will be referred to as the backward and forward zones of B, respectively, and will be denoted as BACKWARDB and FORWARDB. Informally, the set of zones corresponds to the execution of the divide–and–conquer algorithm of Eppstein et al. (1992) and can be represented as 2–3 tree with ~ logL levels, in which a zone of k–th level contains no more than M/2k base pairs.

For q, B ([1, L], q > B let

WORKEDZONES(q; B) = ({BACKWARDk | k (B < q (qk}

In other words, WORKEDZONES(q; B) is a union of all backward zones BACKWARDk of all rows k below B, their forward zones FORWARDk contain ROWq.

Statement S1. There is the algorithm of zone assignment meeting the following conditions:
Z1. Each row ROWB belongs to O(logL) backward and forward zones.

Z2. WORKEDZONES(B; B) = Z(1, B–1) for all B.

Proof. The desired algorithm follows from the divide–and–conquer algorithm from Eppstein et al. (1992) and is presented in the Supplementary section 1.

Implementation of InternalLoopMainRow(B)

Let P (U and y < B for all (x, y) (P and
GMainPARTIAL(A, B;P)= min{G(x, y) + fLen((B–A) – (y–x+2)) | (x, y) (P} (1.2)

To store the intermediate values of GMain(p, q) the function InternalLoopMainRow uses global variables VAR_MAINWORK[x, y] assigned to each base pair (x, y) (U (see agreement on names in the Introduction section). The variables are initialized with +(during the pre–processing step of the main algorithm OptimalRNA, see Supplementary, algorithm S1, line 1. After the call InternalLoopMainRow(B) the variable VAR_MAINWORK [x, y] equals

GMainPARTIAL(x, y; WORKEDZONES(y; B))

 (1.3)
According to the statement Z2, after calls InternalLoopMainRow(k), k = 1, …, B, we thus will obtain for each (A, B) (ROWB,
VAR_MAINWORK [A, B] = GMainPARTIAL(A, B; WORKEDZONES (B; B)) =
= GMainPARTIAL(A, B; Z(1, B–1))=
= GMain(A, B)

 (1.4)

Therefore, after all L calls InternalLoopMainRow(B), B ([1, L], all variables VAR_MAINWORK [x, y], where (x, y) (U will contain the desired values GMain(x, y).
To provide (1.3) and therefore (1.4), during the call InternalLoopMainRow(B) we solve the problem S2 with input data pB < B < qB, P = BACKWARDB, Q = FORWARDB; and weights G(x, y). According to (1.1) and (1.2), for all base pairs (p, q) from Z(B, qB) we obtain the values GMainPARTIAL(p, q; BACKWARDB).

Then we update the values of VAR_MAINWORK [p, q] for all (p, q) (Z(B, qB) by setting

VAR_MAINWORK [p, q] :=
:= min{GMainPARTIAL(p, q; BACKWARDB), VAR_MAINWORK [p, q]} =
= min{GMainPARTIAL(p, q; BACKWARDB),
 GMainPARTIAL(p, q; WorkedZones(q; B–1))} =
 = GMainPARTIAL(p, q; WorkedZones(q; B))

Solution of the problem S2

The algorithm ECore for solving problem S2 is based on the Dynamic minimization procedure, described in the section 2 of Eppstein et al. (1992). Its run–time is O(N*logN), where N is the total number of base pairs in P (Q, and the needed work space is O(N). ECore looks over all base pairs from P (Q in descending order of their x–coordinates, i.e. lower elements of base pairs. At a moment t ([1, L] ECore stores the set

ACTIVEt ({(x, y) | (x, y) (P, x (t},

which consists of all base pairs (x, y) from {(x, y) (P, x (t} that can provide minimum in (1.1) for some base pair (p, q) (Q with p < t.

Since fLen is convex, the modification of the set ACTIVEt (if the current base pair belongs to P) and search in ACTIVEt (if the current base pair belongs to Q) can be performed on average in logN operations. The description of the data structure DAT_ACTIVE, used to store the current set ACTIVEt and details of Dynamic minimization procedure can be found in Eppstein et al. (1992), section 2.

The run–time of call InternalLoopMainRow(B) is determined by the run–time of the procedure ECore and is O(N*logN), where N is a total number of base pairs in backward and forward zones of the B. Thus, (see statement Z1) the total time of all L calls of InternalLoopMainRow and the initialization is O(M*log2L).

Calculation of GStrip(A, B)

The ES–algorithm implements the function InternalLoopStripRow, see Supplementary, algorithm S2 i.e. calculates values GStrip(A, B) for all pairs (A, B) (U. The algorithm is given below. Analogously to the E–algorithm it exploits SDP. Subroutines GetMinimumFromActive and UpdateActive follows Eppstein et al. (1992).
Function InternalLoopStripRow_ES(input: B){

// Computes values GStrip(A, B) for all (A, B) (ROWB;

// Updates variables VAR_STRIPWORK[A, B] for all (A, B) (FORWARDB;

data

array VAR_ACTIVESTRIP[L] of DAT_ACTIVE;

begin

// 1. Pre–processing

1.1. // Initialize VAR_ACTIVESTRIP
for all base pairs (x, y) (BACKWARDB (FORWARDB
 in descendant order by x, then in ascendant order by y do begin

 r = x+y;

 if (x, y) (FORWARDB then begin

 VAR_ACTIVESTRIP[r–B] := empty;

 end

 if (x, y) (BACKWARDB then

 for t from max{t–width+1, B+1}to min{t+width–1, 2*B–1} do begin

 VAR_ACTIVESTRIP[t–B] := empty
 end

 end

end

// Main loop

 2. for all base pairs (x, y) (BACKWARDB (FORWARDB
 in descendant order by x, then in ascendant order by y do begin

3. r = x+y;

4. if (x, y) (FORWARDB then begin

 TEMP = GetMinimumFromActive(x, y, VAR_ACTIVESTRIP[r–B]);

 VAR_STRIPWORK[x, y] = min{ TEMP, VAR_STRIPWORK[x, y] };

 end

5. if (x, y) (BACKWARDB then

 for t from max{ t–width+1, B+1}to min{ t+width–1, 2*B–1 } do begin

 UpdateActive(x, y, VAR_ACTIVESTRIP[r–B]);

 end

 end

 end

end

During the call InternalLoopStripRow(B), the ES–algorithm solves several copies of the Problem S2, each corresponding to a diagonal DIAGr, r = B+1, …, 2*B–1. For all copies the integer input values are pB, B and qB. Thus, we use the same zone assignment as for InternalLoopMainRow function. The input sets for the copy corresponding to a diagonal r are P = BACKWARDB (STRIPr; Q = FORWARDB (DIAGr; and the weight function F(x,y) = Gr(x, y), see (4). For each base pair (x, y) (U we have a variable VAR_STRIPWORK[x, y] which is used analogously to the variable VAR_MAINWORK[x, y] of the previous section.

During the call InternalLoopStripRow(B), all B–1 copies of the Problem S2 are solved in a parallel way. To do this we use the array VAR_ACTIVESTRIP of length L, its elements are DAT_ACTIVE data structure (see sub–section “Solution of the problem S2”). The element VAR_ACTIVESTRIP[i] contains current value of the set ACTIVE for the copy of the Problem S2 corresponding to the diagonal DIAGB+i. For a base pair (x, y) (BACKWARDB we first determine the range of r that (x, y) (STRIPr, then we modify VAR_ACTIVESTRIP[r–B] for all r from the range. For a base pair (p, q) (FORWARDB, we look for a desired minimum in VAR_ACTIVESTRIP[p+q–B].

Each (p, q) (BACKWARDB belongs to at most 2*width–1 strips. Thus, total run time of all calls of InternalLoopStripRow is at most 2*width–1 times larger than the run time of InternalLoopMainRow. Therefore, the run–time of all calls of InternalLoopStripRow is O(width*M*log2L).

Section 2. Proof of Statement S1.
Statement S1. There is the algorithm of zone assignment meeting the following conditions:
Z1. Each row ROWB belongs to O(logL) backward and forward zones.

Z2. WORKEDZONES(B; B) = Z(1, B–1) for all B.

Proof. The algorithm follows the divide–and–conquer procedure from Eppstein et al. (1992). The zone tree is a rooted tree meeting following conditions.

T1. The tree is 2–3 tree, i.e. each its inner node has 2 or 3 sons, the sons are ordered. The i–th son of a node V will be denoted as Son(V, i).

T2. Each node V of the tree is assigned with a range of rows Range(V) = [s(V), t(V)]; here s(V) and t(V) are the first and the last row of the range; 1 (s(V) (t(V) (L. Size(V) denotes the size of the zone Z(s(V), t(V)), i.e. the total number of allowed base pairs in rows ROWs(V), …, ROWt(V).
T3. If R is a root of the tree, then Range(R) = [1, L] = U.

T4. Let V be an inner node of the tree. Then only one of 4 following relations between V and its sons are possible:

4.1. V has two sons V1 and V2 and

a) s(V1) = s(V); s(V2) = t(V1)+1; t(V2) = t(V);

b) Size(V) is even and Size(V1)= Size(V2)= Size(V)/2.
4.2. V has two sons V1 and V2 and

a) t(V1) = s(V1) = s(V); s(V2) = s(V)+1 = t(V1)+1; t(V2) = t(V);

b) Size(V2) < Size(V)/2.
4.3. V has two sons V1 and V2 and

a) s(V1) = s(V); t(V1) = t(V)–1; s(V2) = t(V1)+1 = t(V2) = t(V);

b) Size(V1) < Size(V)/2.
4.4. V has three sons V1, V2, and V3 and

a) s(V1) = s(V); t(V2) = s(V2) = t(V1)+1; s(V3) = t(V2)+1; t(V3) = t(V);

b) Size(V1) < Size(V)/2; Size(V2) < Size(V)/2.
T5. If V is a leaf, then its zone contains exactly one non–empty row.

According Eppstein et al. (1992) we will define the zone tree for the given set U of base pairings by the following induction.

E0. The initial tree T0 consists of the root R assigned with the zone Z(1, L).

E1. Let we have a tree Tk meeting conditions T1–T4, and V is the first (according to the lexicographic order corresponding to the ordering of sons) leaf of Tk that does not fit T5; Range(V) = [s(V), t(V)]. The tree Tk+1 will be obtain by addition the sons of V according the following rules.

E.1.1 Let Size(Z(s(V), s(V)) > Size(V)/2. Then we add two sons V1 and V2 and set s(V1) = t(V1) = s(V); s(V2) = s(V)+1; t(V2) = t(V). The nodes V, V1 and V2 correspond to the case 4.2.

E.1.2. Let Size(Z(s(V), s(V)) (Size(V)/2 and let

b = max{d (t(V) | Size(Z(s(V),d)) (Size(V)/2}.

Obviously, 1 (b (t(V)–1. If Size(Z(s(V), b) = Size(V)/2, then we add two sons V1 and V2 and set s(V1) = s(V); t(V1) = b; s(V2) = b+1; t(V2) = t(V). This corresponds to the case 4.1.

E.1.3. Let Size(Z(s(V), b) < Size(V)/2 and b = t(V)–1. We add two sons V1 and V2 and set s(V1) = s(V); t(V1) = b = t(V)–1; s(V2) = b+1 = t(V); t(V2) = t(V); this corresponds to the case 4.3.

E.1.4. Finally, let Size(Z(s(V), b) < Size(V)/2 and b (t(V)–2. This implies Size(Z(t(V), t(V)) < Size(V)/2. In this case we add three new nodes V1, V2, V3 and assign them with zones as follows:

s(V1) = s(V); t(V1) = b; t(V2) = s(V2) = b+1; s(V3) = t(V2)+1 = b+2; t(V3) = t(V).

Let’s show that this corresponds to the case 4.4. Indeed, if

Size(V3) = Size(Z(b+2, t(V)) (Size(V)/2

then Size (Z(s(V), b+1)) (Size(V)/2 that contradicts the definition of b.

Lemma 1.1.

1. The described procedure converges to the zone tree ZT(U).

2. The height of the obtained zone tree ZT(U) does not exceed logM.

Proof. Let V be a node of an intermediate tree Tr, the level of V is k, and the range Range(V) contains at least two non–empty rows. One can see that in this case Size(V) (M/2k . The lemma directly follows from this observation.

Lemma 1.2
1. Let B ([1, L] and the row ROWB is not–empty. Then there is exactly one leaf V of the tree ZT(U) such that B (Range(V). If V is the leaf of ZT(U) then there is exactly one non–empty row B such that B (Range(V). This defines the one–to–one correspondence between non–empty rows in U and leaves of ZT(U).

The leaf corresponding to the non–empty row B will be denoted as Leaf(B).

2. Let B, B’ are non–empty rows, B < B’. Then Leaf(B) precedes Leaf(B’) in lexicographic order of the nodes of ZT(U).

3. Let V is the leaf corresponding to the non–empty row B and V0 = R, V1, …, Vn = V are all nodes on the path from the root to V. Then for a node W of V
B (Range(W) (W ({ V0, V1, …, Vn }

Proof.
The next lemma follows from the definition of the zone tree. For the sake of brevity we do not give its proof here.

We say that the node V is weak if it is a root or is the 1st son of its parent. Otherwise, the node is strong.

Lemma 1.3.

1. Let B is non–empty row and it is not the first non–empty row, i.e. there is a non–empty row b, where b < B. Then the path from the root R to the leaf Leaf(B) contains at least one strong node.

2. Let V be the last strong node on the path from the root R to the leaf Leaf(B). Then B is the first non–empty row in the Range(V).

Proof. Follows from the claim 2 of Lemma 1.2.

Let B is the non–first non–empty row. The last strong node on the path from the root to the Leaf(B) will be denoted as Strong(B).

Now we are ready to describe the algorithm assigning zone borders pB, qB to all non–empty rows ROWB, B ([1, L], except of the first non–empty row. The algorithm consists of two steps.

A1. Create the zone tree ZT(U) according E0, E1.

A2. Let B be the non–first non–empty row; V = Strong(B) and W is a Parent of V. Then pB = s(W); qB = t(V).

Obviously, the run–time of the algorithm is O(L*logL). The claim Z1 follows from the claim 2 of Lemma 1.1 and the claim 3 of lemma 1.2. Consider the claim Z2. Let B be the non–first non–empty row. According to A2 B (FORWARDx (B (Range(Strong(x)).

According to Lemma 1.2, claim 3, this implies

B (FORWARDx (Strong(x) belongs to the path from the root to Strong(B)
 (2.1)

The claim Z2 can be proven by induction on the number of strong nodes on the path from the root to Strong(B). Suppose, that the path does not contain strong nodes. Then all these nodes are weak and thus for the farther of Strong(B) we have s(W) = 1. Then pB = 1 and BACKWARDB = [1, B–1]. Let Strong(B’) is the last strong node the path from the root to Strong(B). Obviously, B’ < B and by induction

WORKEDZONES(B’; B’) = Z(1, B’–1)

 (2.2)

According to (2.1) and because of definition of B’,

WORKEDZONES(B’; B’) (WORKEDZONES(B; B)

 (2.3)

Analogously to the basic of induction we can show that

BACKWARDB = Z(s(Strong(B’), B–1)

 (2.4)

According to the Lemma 1.3, claim 2,

Z(s(Strong(B’), B–1) = Z(B’, B–1)

 (2.5)
Now the claim Z2 follows from (2.2) – (2.5)
Section 3. Proof of Statement 1.
Statement 1. Let (x1, y1), …, (xn, yn) be all (r, B)–candidates, ordered by decrement of di = yi–xi. Then,

1. All values y1–x1, …, yn–xn are different, i. e. y1–x1 > … > yn–xn;

2. Gr(x1, y1) > … > Gr(xn, yn);

3. There are values T0 = B–1 < T1 < … < Tn–1 < Tn = L such that HOMEr,B(xi, yi) = [Ti–1+1, Ti].

Proof.

1 Suppose that yi–xi = yi+1–xi+1. If, e.g. Gr(xi, yi) < Gr(xi+1, yi+1), then for all (p, q) (DIAGr

Gr(xi, yi) + fLen((q–p) – (yi–xi+2)) < Gr(xi+1, yi+1) + fLen((q–p) – (yi+1–xi+1+2)), or

GIStruct(xi, yi; p, q) < GIStruct(xi+1, yi+1; p, q),

and (xi+1, yi+1) cannot be a (r, B)–candidate. Then, Gr(xi, yi) = Gr(xi+1, yi+1). In this case, according to (c) of the definition of OWNERr,B(q, p), only one of pairs (xi, yi), (xi+1, yi+1) can be a (r, B)–candidate. The contradiction proves the statement.

2. By definition, for al i < n we have: yi–xi > yi+1–xi+1, and thus for any (p, q) (DIAGr, p+q = r, q (B

(q–p) – (yi–xi +2) < (q–p) – (yi+1–xi+1+2)

Function fLen increases monotonously, thus

fLen((q–p) – (yi–xi +2)) < fLen((q–p) – (yi+1–xi+1+2))

 (3.1)
Now one can see that Gr(xi, yi) (Gr(xi+1, yi+1) together with (3.1) implies that for all (p, q) (DIAGr, p+q = r, q (B
Gr(xi, yi) + fLen((q–p) – (yi–xi+2)) < Gr(xi+1, yi+1) + fLen((q–p) – (yi+1–xi+1+2))
The latter is impossible, because (xi+1, yi+1) is the (r, B)–candidate.

3. The statement utilizes the convexity of the function fLen and follows from the lemma given below (see also Eppstein et al. (1992)).

Lemma 2.1. Let (A, B), (A’, B’) (U; A+B = A’+B’ = r; and B’ > B.

Let (x, y), (x’,y’) (U(A, B) (U(A’, B’), and y–x < y’–x’ and

Gr(x, y) + fLen((B–A) – (y–x+2)) < Gr(x’, y’) + fLen((B–A) – (y’–x’+2))
 (3.2)

Then

Gr(x, y) + fLen((B’–A’) – (y–x+2)) < Gr(x’, y’) + fLen((B’–A’) – (y’–x’+2))

Proof. We have to prove that

fLen((B’–A’) – (y–x+2)) – fLen((B’–A’) – (y’–x’+2)) < Gr(x’, y’) – Gr(x, y)

According to (3.2) it is enough to prove that

fLen((B’–A’) – (y–x+2)) – fLen((B’–A’) – (y’–x’+2)) <
 < fLen((B–A) – (y–x+2)) – fLen((B–A) – (y’–x’+2))

or, equivalently,

fLen((B’–A’) – (y–x+2)) + fLen((B–A) – (y’–x’+2))<
 < fLen((B’–A’) – (y’–x’+2)) + fLen((B–A) – (y–x+2))

 (3.3)

Note, that

[(B’–A’)–(y–x+2)] + [(B–A) – (y’–x’+2)] =
[(B’–A’)–(y’–x’+2)] + [(B–A) – (y–x+2)]

 (3.4)

and

0 < [(B–A) – (y’–x’+2)] < [(B’–A’)–(y’–x’+2)] < [(B’–A’) – (y–x+2)]
 (3.5)
0 < [(B–A) – (y’–x’+2)] < [(B–A)–(y–x+2)] < [(B’–A’) – (y–x+2)]

 (3.6)

Now (3.3) follows from convexity of the function fLen together with (3.4), (3.5) and (3.6).

Section 4. Proof of Statement 2, part 1.

Statement 2.

1. The function InternalLoopStripRow_G(B) correctly calculates values GStrip(A,B) within the algorithm OptimalRNA_G.

2. The total run–time of calls InternalLoopStripRow_G(B) and UpdateCandidate(B) within the work of the algorithm OptimalRNA_G (see Supplementary, algorithms S3–S5) O(width*M*logL), fLen(x) is supposed to be a convex function, its the value can be calculated in constant time.

3. If fLen(x) is logarithmic function, then the total run–time of calls InternalLoopStripRow_G(B) and UpdateCandidate(B) within the work of the algorithm OptimalRNA_G (see Supplementary, algorithms S3–S5) is O(width2*M), the value fLen(x) is supposed to be calculated in constant time.

4. The workspace of the OptimalRNA_G is O(L) + O(width*M)

Proof. 1. The implementation of InternalLoopStripRow_G(B) is shown in Supplementary, algorithm S3 Suppose, that before the call InternalLoopStripRow_G(B) the variable VAR_CANDIDATESTRIP[r] contains the candidate list CANDr,B. Consider the pairing (A, B) (ROWB and let r = A+B. The function GetFirst(r) gets the 1st element C = (C.x, C.y, C.dG, C.Tmin, C.Tmax) of the list VAR_CANDIDATESTRIP[r] = CANDr,B. According to statement 1, (C.x, C.y) = OWNERr,B(r–B, B)= OWNERA+B,B(A, B). Thus, the value GStrip(A, B) can be calculated as

GStrip(A, B) = GA+B(C.x, C.y) + fLen(((A+B) – 2*B) – (C.y–C.x+2))

To finish the proof we have to show that UpdateCandidate(B) correctly updates candidate lists. To update the list VAR_CANDIDATESTRIP [r] from CANDr,B to CANDr,B+1 one has to work up base pairs from the set

DELTAr,B = STRIPPREDr(B+1)\ STRIPPREDr(B).

Note, that

DELTAr,B ({(r–B+t, B)|t = 0, 1, …, width–1} ({(r–B, B–t)|t = 1, …, width–1}

We first work out all new candidates that belong to ROWB (see line 1.1, Supplementary algorithm S4, then all other candidates (see line 1.2). This determines the ordering of all elements of DELTAr,B: (u1, v1), (u2, v2), …, (us, vs). Let Dj(r, B) = STRIPPREDr(B) ({(u1, v1), …, (uj, vj)}. Obviously,
D0(r, B) = STRIPPREDr(B);
Ds(r,B) = STRIPPREDr(B+1).

Let (p, q) (DIAGr, q (B+1, r = p+q. Analogously to OWNERr,B(p, q) (STRIPPREDr(B), we define TEMPOWNERr,B(p, q, j) (Dj(r, B) as a minimal element according the ordering: (x, y) < (x’, y’) defined in the sub-section “2.3.Function InternalLoopStripRow and candidate lists”. We say that (x, y) (Dj(r, B) is an (r, B, j)–candidate if (x, y) = TEMPOWNERr,B(p, q, j) for some (p, q) (U, q (B+1.

Lemma 3.1. Statement 1 is valid for the lists of (r, B, j)–candidates. I. e. let (x1, y1), …, (xn, yn) be all (r, B, j)–candidates, ordered by decrement of di = yi–xi. Then,

1.1. All values y1–x1, …, yn–xn are different, i. e. y1–x1 > … > yn–xn;

1.2. Gr(x1, y1) > … > Gr(xn, yn);

1.3. There are values T0 = B < T1 < … < Tn–1 < Tn = L such that HOME r,B,j(xi, yi) = [Ti–1+1, Ti], where (r, B, j)–home HOME r,B,j(x, y) of the (r, B, j)–candidate (x, y) is a set of all q such that B (q < r and (x, y) = OWNERr,B,j(r–q, q).

Proof. is exactly the same as for Statement 1. See Supplementary section 3.
Let CANDr,B,j–1 = {Ci}, i = 1,…, N; Ci = <Ci.x, Ci.y, Ci.dG, Ci.Tmin, Ci,Tmax>. Consider j ({1, …, s} and let (u, v) = (uj, vj) (DELTAr,B and G = Gr(u, v), see (4). Let further Cd = <PREV.x, PREV.y, PREV.dG, PREV.Tmin, PREV,Tmax> be the last element of CANDr,B,j–1 with PREV.y– PREVx (v–u. We set d=0 if v–u. > Ci.y – Ci.x for all i = 1,…, N. Let’s define Start(u, v; i), where i (d as
Start(u, v; i) =
 = min{ Ci.Tmax+1(… ({t([Ci.Tmin, Ci.Tmax] |

 | G+fLen((2*t –r) – (u–v+2)) < Ci.dG+fLen((2*t –r)–(Ci.y–Ci.x +2))}
 }

Analogously, for i > d we define

End(u, v; i) =
 = max{ Ci.Tmin–1 (… ({ t([Ci.Tmin, Ci.Tmax] |

 | G+fLen((2*t –r) – (u–v+2)) < Ci.dG+fLen((2*t –r)–(Ci.y–Ci.x +2))}
 }

Finally, let

Start(u, v) = Start(u, v; d), if d (1; Start(u, v) = B+1 otherwise;
End(u, v) = End(u, v; d+1), if d (N; End(u, v) = L otherwise;

Lemma 3.2.

1. (u, v) (CANDr,B,j if and only if
1.1. G < PREV.dG and

1.2. End(u, v; i) > Start(u, v; i)

2. Let i (d. Then Ci (CANDr,B,j if and only if Gpred(i) > Epred(i), where

Epred(i) = Ci.dG + fLen((2*Ci.Tmin – r) – (Ci.y – Ci.x + 2));
Gpred(i) = G + fLen((2*Ci.Tmin – r) – (v – y + 2));

3. Let i > d. Then Ci(CANDr,B,j if and only if Gsucc(i) > Esucc(i), where

Esucc(i) = Ci.dG + fLen((2*Ci.Tmax – r) – (Ci.y – Ci.x + 2));
Gsucc(i) = G + fLen((2*Ci.Tmax – r) – (v – y + 2));

4. Let (u, v) (CANDr,B,j. and Ci (CANDr,B,j–1 is the immediate predecessor of (u, v) in CANDr,B,j. Then the value Tmin corresponding to (u, v) can be found as
Tmin =
= min{t | G+fLen((2*t – r)–(u–v+2)) (Ci.dG+fLen((2*t – r) – (Ci.y–Ci.x +2))}=
= Start(u, v; i)
5. Let (u, v) (CANDr,B,j. and Ci (CANDr,B,j–1 is the immediate successor of (u, v) in CANDr,B,j. Then the value Tmax corresponding to (u, v) can be found as

Tmax =
= max{t | G+fLen((2*t – r)–(u–v+2)) < Ci.dG + fLen((2*t – r) – (Ci.y – Ci.x + 2)}=
= End(u, v; i)
Proof. See Supplementary section 6.

The function IncludeCandidate directly follows Lemma 3.2, its steps correspond to the claims of the Lemma. The only difference is that we avoid checking condition 1.2 at step 1 and do this only at step 6. This completes the proof of the 1st part of the Statement 2.
Section 5. Proof of Statement 2, parts 2, 3.

Statement 2.

1. The function InternalLoopStripRow_G(B) correctly calculates values GStrip(A, B) within the algorithm OptimalRNA_G.

2. The total run–time of calls InternalLoopStripRow_G(B) and UpdateCandidate(B) within the work of the algorithm OptimalRNA_G (see Supplementary, algorithms S3–S5) O(width*M*logL), fLen(x) is supposed to be a convex function, its the value can be calculated in constant time.

3. If fLen(x) is logarithmic function, then the total run–time of calls InternalLoopStripRow_G(B) and UpdateCandidate(B) within the work of the algorithm OptimalRNA_G (see Supplementary, algorithms S3–S5) is O(width2*M), the value fLen(x) is supposed to be calculated in constant time.

4. The workspace of the OptimalRNA_G is O(L) + O(width*M)

Proof. The total run time of all calls of InternalLoopStripRow_G, see Supplementary, algorithm S3 is O(M), because the call for the given (A, B) (U the call GetFirst(B, A+B) and the computation of VAR_STRIPWORK[A, B] can be performed in a constant time.

The pre–processing steps of the function UpdateCandidate, see lines 1.1 and 2.1, Supplementary algorithm S4 are performed in O(width*M) time, because each of call of lines 1.1.1, 1.1.2, 2.1.1, 2.1.2 is performed in constant time and each of these lines is called O(width*M) times.

To accomplish the proof we have to consider the function IncludeCandidate, see Supplementary algorithm S5, its steps correspond to the claims of Lemma 3.2, see Supplementary section 4. Step 1 is the most tiresome one and we will consider it at the end of the section.

The total run–time T2,3 of steps 2 and 3 during all calls of IncludeCandidate can be represented as

T2,3 = O(NIncl) + O(NDel*TDel)

where NIncl is the number of calls of IncludeCandidate, NDel is the number of calls of DeleteCurrent, and TDel is the time needed to delete the current element of the candidate list. Each pairing (x, y) (U can be included only in O(width) lists, therefore NIncl = O(width*M). In turn, each (x, y) (U can be deleted from each candidate list at most once. Thus, NDel = O(width*M). The time TDel is O(1) if we represent candidate lists as ordinary lists and O(logL) if tree–like structure is utilized (see below). Therefore we have

T2,3 = O(width*M*TDel)

 (5.1)

where

TDel = O(1) or TDel = O(logL)

 (5.2)

Analogously, for the total run–time T6 of steps 6during all calls of IncludeCandidate we have

T6 = O(NIncl*TIns) = O(width*M*TIns)

 (5.3)

where TIns is the time needed to insert the new element of the candidate list. Depending of the chosen implementation

TIns = O(1) or TIns = O(logL)

 (5.4)

The total run–time T4,5 of steps 4 and 5 during all calls of IncludeCandidate is O(NIncl*TRoot), where TRoot is the time needed to find values of DP and DN, see lines 4.1 and 5.1. If fLen(x) is logarithmic function this can be done in constant time. In case of a general convex function, the binary search (see Lemma 2.1, Supplementary section 3) leads to TRoot = O(logL). Therefore, we again obtain two variants of formula for T4,5:

T4,5 = O(width*M*logL)

 (5.5)

for the arbitrary convex function fLen and

T4,5 = O(width*M)

 (5.6)

if fLen is logarithmic function.

Now we come to the step 1. The total run–time T1 of this step 5 during all calls of IncludeCandidate can be represented as
T1 = O(NIncl*TFind) = O(width*M*TFind),

 (5.7)

where TFind is the average run–time of the function SetPointerToPred, i.e, needed to locate in the candidate list the putative predecessor of the given pairing (u, v), see Lemma 3.2, Supplementary section 4. The function SetPointerToPred can be implemented in several ways. First, we can represent the lists as balanced trees (see, e.g. Aho et al., 1974) and this gives us

TFind = O(logL).

In combination with (5.1), (5.3), (5.5) and (5.7) this gives us the desired estimation of the overall run–time. However, the other bounds are also possible. We can represent candidate lists as ordinary lists and obtain
TFind = O(width)

that with (5.7) and the above estimations T2,3, T4,5, and T6 for gives estimation O(width2*M) both for T1 and for overall run–time. This proves the claim 3 of the statement 2.

The workspace of the algorithm OptimalRNA_G is determined by the space needed to store the candidate lists. Note, that each (x, y) (U can belong at most to O(width) lists. The claim 4 follows from the above observations.
Section 6. Proof of Lemma 3.2.

Let DELTAr,B: {(u1, v1), (u2, v2), …, (us, vs)}, see notation in the Supplementary section 4. Consider j({1, …, s}. Let CANDr,B,j-1 = {Ci}, i = 1,…, N; Ci = <Ci.x, Ci.y, Ci.dG, Ci.Tmin, Ci.Tmax>. Let further (u, v) = (uj, vj) (DELTAr,B; G = Gr(u, v), see (4) and

Cd = <PREV.x, PREV.y, PREV.dG, PREV.Tmin, PREV.Tmax>
be the last element of CANDr,B,j-1 with PREV.y – PREVx (v–u. We set d = 0 if v–u > Ci.y – Ci.x for all i = 1, …, N. Let’s define Start(u, v; i), where i (d as
Start(u, v; i) =
 = min{ Ci.Tmax+1(… ({t([Ci.Tmin, Ci.Tmax] |

 | G+fLen((2*t –r) – (u–v+2)) < Ci.dG+fLen((2*t –r)–(Ci.y–Ci.x +2))}
 }

Analogously, for i > d we define

End(u, v; i) =
 = max{ Ci.Tmin–1 (… ({ t([Ci.Tmin, Ci.Tmax] |

 | G+fLen((2*t –r) – (u–v+2)) < Ci.dG+fLen((2*t –r)–(Ci.y–Ci.x +2))}
 }

Finally, let

Start(u, v) = Start(u, v; d), if d (1; Start(u ,v) = B+1 otherwise;
End(u, v) = End(u, v; d+1), if d (N; End(u, v) = L otherwise;

Lemma 3.2.

1. Let (u, v) (CANDr,B,j. Then G < PREV.dG and

2. (u, v) (CANDr,B,j if and only if Start(u, v) (End(u, v)

3. Let (u, v) (CANDr,B,j . Then G < PREV.dG and

4. Let i (d. Then Ci(CANDr,B,j if and only if Gpred(i) > Epred(i), where

Epred(i) = Ci.dG + fLen((2*Ci.Tmin – r) – (Ci.y – Ci.x + 2));
Gpred(i) = G + fLen((2*Ci.Tmin – r) – (v – u + 2));

5. Let i > d. Then Ci(CANDr,B,j if and only if Gsucc(i) > Esucc(i), where

Esucc(i) = Ci.dG + fLen((2*Ci.Tmax – r) – (Ci.y – Ci.x + 2));
Gsucc(i) = G + fLen((2*Ci.Tmax – r) – (v – u + 2));

6. Let (u, v) (CANDr,B,j and Ci (CANDr,B,j-1 is the immediate predecessor of

 (u, v) in CANDr,B,j. Then the value Tmin corresponding to (u, v) can be found as
Tmin =
= min{t| G+fLen((2*t – r)–(u–v+2)) (Ci.dG+fLen((2*t – r) – (Ci.y–Ci.x +2))} =
= Start(u,v; i)
7. Let (u, v) (CANDr,B,j. and Ci (CANDr,B,j-1 is the immediate successor of (u, v) in CANDr,B,j. Then the value Tmax corresponding to (u, v) can be found as

Tmax = max{t|G+fLen((2*t – r)–(u–v+2)) < Ci.dG + fLen((2*t – r) – (Ci.y – Ci.x + 2))}

Proof. We will consider in details only the Claim 1, 2. The other claims can be proved with similar technique based on Lemma 2.1, see Supplementary section 3.

1.

(u, v) (CANDr,B,j

 (6.1)

Then G (PREV.dG is impossible, otherwise, for all (r – q, q) with q (B+1 we will have

PREV.dG + fLen((2*q– r) – (PREV.y – PREV.x + 2)) (
 < G + fLen((2*q – r) – (v – u + 2))

 (6.2)

and therefore (u, v) (CANDr,B,j.

2. (->) Let’s suppose that (u, v) (CANDr,B,j and

Start(u,v) > End(u,v).

 (6.3)

We shall show that (6.3) also contradicts (6.1). If (6.3) holds, then Start(u,v) > B+1. Therefore 1 (d (N and thus

Start(u, v) = Start(u, v;d) =
 = min{ Cd.Tmax+1(… ({t([Cd.Tmin, Cd.Tmax]

| G+fLen((2*t –r) – (u–v+2)) < Cd.dG+fLen((2*t – r)–(Cd.y–Ci.x +2))}
 }

For d < N we have Cd+1.Tmin–1 = Cd.Tmax therefore, taking in account the definition of End(u, v), (6.3) implies d < N;
Start(u, v) = Cd.Tmax+1;
End(u, v) = Cd+1.Tmin–1 = Cd.Tmax = Start(u, v)–1

 (6.4)
or d = N;
Start(u, v) = Cd.Tmax+1 = L+1;
End(u, v) = L

 (6.5)

For brevity, we will consider only case (6.4). In this case d < N and Cd+1.Tmin = Cd.Tmax+1. According to (6.4), for all t ([Cd.Tmin, Cd.Tmax]

G+fLen((2*t – r) – (u–v+2)) (Cd.dG+fLen((2*t – r)–(Cd.y–Cdx +2))

 (6.6)

and for all t([C d+1.Tmin= Cd.Tmax+1, C d+1.Tmax]

G+fLen((2*t – r) – (u–v+2)) (Cd+1.dG+fLen((2*t – r)–(Cd+1.y–Cd+1.x+2))
 (6.7)

According to (6.1) let

(u, v) = OWNERr,B,j(r–q, q)

 (6.8)

for some q (B+1. We have to consider separately two cases: (i) q (Cd.Tmax and (ii) q (Cd+1.Tmin = Cd.Tmax+1. In case (i). Lemma 2.1 (see Supplementary section 3) and (6.4) imply

G+fLen((2*q – r) – (u–v+2)) (Cd.dG+fLen((2*q – r)–(Cd.y–Cd.x+2))
 (6.9)

and in case (ii) Lemma 2.1 (see Supplementary section 3) and (6.5) imply

G+fLen((2*q – r) – (u–v+2)) (Cd+1.dG+fLen((2*q – r)–(Cd+1.y–Cd+1.x+2))
 (6.10)

Formulae (6.9), (6.10) contradict (6.8) and therefore contradict (6.1). This completes proof of the claim 2 of Lemma 3.2, case (->).

2 (<-) . Let

Start(u, v) (End(u, v).

 (6.11)

Our goal is to prove that (u, v) (CANDr,B,j .Analogously to case 1a, (6.11) implies (cf. (6.4) and (6.5))

Start(u,v) = Start(u,v;d) = min{t([Cd.Tmin, Cd.Tmax]
| G+fLen((2*t – r) – (u–v+2)) < Cd.dG+fLen((2*t – r)–(Cd.y–Cd.x+2))}
 (6.12)
End(u, v) = End(u, v; i) = max{ t([Cd+1.Tmin, Cd+1.Tmax]
| G+fLen((2*t – r) – (u–v+2)) < Cd+1.dG+fLen((2*t – r)–(Cd+1.y–Cd+1.x+2))} (6.13)

For example, let’s (6.12) is true, case of (6.13) can be treated in the same way. Let q= Cd.Tmax. (6.13) implies

G+fLen((2*q – r) – (u–v+2)) < Cd.dG+fLen((2*q –r)–(Cd.y–Cd.x+2))

 (6.14)

But (Cd.x, Cd.y) = OWNERr,B,j–1(r–q, q) and therefore, for all (x, y) (Dr,B,j–1

Cd.dG+fLen((2*q–r)–(Cd.y–Cd.x+2)) < Ci.dG+fLen((2*q–r)–(Ci.y–Ci.x+2))
 (6.15)

Formulae (6.14), (6.15) imply that (u, v) = OWNERr,B,j-1(r–q, q) and thus (u, v) (CANDr,B,j. This completes the proof of case 1b.

Section 7. The algorithm MLF_E.
Below we give the implementation of the Algorithm MLF_E. The presentation is extended compared to Supplementary, algorithm S1; the arrays BACKWARDZONE, FORWARDZONE, VAR_MAINWORK, VAR_STRIPWORK and the functions InternalLoopMainRow(B); InternalLoopStripRow_ES(B) are given explicitly, see previous sections.

algorithm MLF_E(input: sequence RNA)
var global

int BACKWARDZONE[L], FORWARDZONE[L];

real VAR_MAINWORK[U], VAR_STRIPWORK[U];

begin

// 1. Pre–processing

1.1. for all base pairs (A, B) (U do begin

 VAR_MAINWORK[A, B] := (;

 VAR_STRIPWORK[A, B] := (;

 end

1.2. Compute BACKWARDZONE[B] and FORWARDZONE[B], B= 1, …, L
// The main loop

2. for all B: (1 (B (L) in increasing order do begin
2.1 HairpinRow(B);

2.2. SimpleLoopRow(B);

2.3.1. InternalLoopMainRow(B);

2.3.2. InternalLoopStripRow_ES(B);

2.3.3. for all A: ((A, B) (ROWB) in decreasing order do begin
 VAR_MAINWORK[A, B] :=

 := min{ VAR_MAINWORK[A, B], VAR_STRIPWORK[A, B] }

 end

2.4. OptimalLoopRow(B);

 end

// Post–processing

3. Find min{ VAR_MAINWORK[A, B] | (A, B) (U }

end

PAGE
10

_1168272965.doc

A

B

C

D

E

F

G

I

H

5’

3’

