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Fig. S1. Example of a secondary structure containing different types of loops: A - stacked 
loop, B -  bulge, C – simple bulge (0x1), D – multi-branched loop, E – simple 1x1 internal 
loop, F – simple 1x2 internal loop, G – simple 2x2 internal loop, H – internal loop, I – 
hairpin loop. 
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f Len

y  = 1.06*Ln (x ) + 0.1
R 2  = 0.9985
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Fig. S2. The graph of function fLen(t) according to Mathews et al. (1999) (dotted line) and 

its logarithmic approximation y = 1.06*ln(x) + 0.1 (solid line). In Mathews et al. (1999) 

the values of fLen(t) are defined as c1 + c2*log(t/30) for t > 30. 
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  Y = j              
G 15     +          + +   +   +   +   
G 14      +         + +   +   +   +   
U 13        + + +  +     +   +   +    
G 12               + +   +   +   +   
A 11                                
G 10               + +   +   +   +  
A 9                                
C 8                       +        
C 7                       +        
A 6                                
C  5                       +        
G 4                         +   +   
C  3                                
A 2                             +  
U 1                               X = L–i+1 
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Fig. S3.  Dot–matrix representation of possible base pairings within the secondary 

structure of an RNA molecule with sequence “UACGCACCAGAGUGG” (L=15). A 

putative pair (p, q) is represented by ‘+’ at position (L–p+1, q), as if we place one copy of 

RNA sequence along X axis from right to left and the other one along Y axis from bottom 

to top. The pairings which belong to set ROW10 are boldfaced. 
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RNA 

sequence 
RNA 
Length 

Max length of 
a candidate list

Average length 
of a candidate 
list 

 
NM_207436 1597 26 2.05 

 
NM_173589 3222 20 1.97 
NM_003622 6076 20 2.03 
NM_032969 9146 14 2.11 
NM_014611 17400 14 1.99 

 
Fig. S4. Lengths of candidate lists within M-algorithm (see sub-section 2.2) for different 

lengths of RNA.  
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 Algorithms 
 
algorithm OptimalRNA(input: RNA[1..L])  
begin  
  // 1. Pre–processing 
      Initialize the data structures 
  // 2. The main loop 
      for all B from 1 to L do begin 
2.1.  HairpinRow(B);  
2.2.  SimpleLoopRow(B);  
2.3. InternalLoopRow(B);  
2.4. Multi-branchLoopRow(B);  
2.5. OptimalLoopRow(B);  
      end 
  // 3. Post–processing 
 Restore the optimal RNA secondary structure from the data obtained  
End 
 
Algorithm S1. Framework of the algorithm finding the optimal secondary structure of an RNA 
sequence. At each of the steps 2.1 – 2.5, the function processes the row ROWB. For each nucleotide 
pair (A, B) ∈ ROWB the function finds the optimal structure with the most external (closing) pair (A, 
B), where (A, B) closes the loop of the corresponding type. For example, Multi-branchLoopRow(B) 
corresponds to the structures where the external loop is a multi-branch loop and SimpleLoopRow(B) 
corresponds to the structures having external simple loop, e. g. a stacking pair, a bulge, or an 
internal loops with small distances between its opening and closing base pairs. The subject of our 
main interest is function InternalLoopRow(B), which finds the optimal internal loops of general 
form, i.e. having fragments of unpaired bases of length 3 or more. Function Multi-
branchLoopRow(B) finds the optimal structure for each fragment [A, B] (not necessarily containing 
the base pairing (A, B)), in addition to finding the optimal structures having external multi-branch 
loop. Function OptimalLoopRow(B) finds, for each pair (A, B) ∈ ROWB, the best structure with the 
closing pair (A, B) as the structure having the minimal energy from the four structures obtained in 
lines 2.1 – 2.4. 
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algorithm InternalLoopRow(input: B){ 

begin  
   for all B from 1 to L do begin 
        InternalLoopMainRow(B); // Computes ∆GMain(A, B) for all pairs (A, B) ∈ ROWB 

        InternalLoopStripRow(B); // Computes ∆GStrip(A, B) for all pairs (A, B) ∈ ROWB 
        InternalLoopFinalRow(B); // For all pairs (A, B) ∈ ROWB computes  
                                                   // ∆GIStruct(A, B)  = 
                                                   //       = min{ base_value + ∆GMain(A, B), ∆GStrip(A, B) } 
   end 
end 
Algorithm S2. Function InternalLoopRow(B). 
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(a) 
algorithm OptimalRNA_G(input: RNA[1..L])  
 array VAR_CANDIDATESTRIP[2*L] of list of candidate; 
begin  
  // 1. Pre–processing 
     for all r from 3 to 2*L–1 do begin 
          set VAR_CANDIDATESTRIP[r] to empty list; 
     end 
  // 2. The main loop 
      for all B from 1 to L do begin 
2.1.  HairpinRow(B);         
2.2.  SimpleLoopRow(B);  
2.3.  InternalLoopRow_G(B);  
2.4.  MultipleLoopRow(B);  
2.5.  OptimalLoopRow(B);  
2.6.  UpdateCandidate(B); 
      end 
  // 3. Post–processing 
 Restore the optimal RNA secondary structure from the data obtained  
end 
 
(b) 
algorithm InternalLoopStripRow_G(input: B){ 
// Computes ∆GStrip(A, B) for all (A, B) ∈ ROWB; 
global var 
 float VAR_STRIPWORK[U]; 
 array VAR_CANDIDATESTRIP[2*L] of list of DAT_CANDIDATE; 
local var 
 DAT_CANDIDATE C; 
begin 
 for all base pairs (A, B) from ROWB in descending order by A do begin 
  r = A+B;  
  C = GetFirst(r); 
   VAR_STRIPWORK[A, B] = C.dG + fLen( (B–A) – (C.y –C. x +2) ); 
 end 
end 
 

Algorithm S3.(a) Framework of the algorithm finding the optimal secondary structure 
of an RNA molecule, modified to implement the function InternalLoopRowStrip_G. 
The call UpdateCandidate(B). line 2.6, updates lists VAR_CANDIDATESTRIP[r] from 
Candr,B to Candr,B+1 according to newly calculated values ∆G(A, B) for all (A, B) ∈ 
ROWB. The other functions (lines 2.1 – 2.5) give the same results as ones on 
Supplementary Figure S2. 
(b) Function InternalLoopStripRow_G. The function GetFirst(r) gets the 1st element of 
the list VAR_CANDIDATESTRIP[r] = CANDr,B . The data structure 
DAT_CANDIDATE describes one element of the candidate list x, y and dG, are the 
components of DAT_CANDIDATE (see “Description of G–algorithm”). 
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algorithm UpdateCandidate(input: B){ 
// Updates value VAR_CANDIDATESTRIP[r] from Candr,B to Candr,B+1. 
global var 
 array VAR_CANDIDATESTRIP[2*L] of list of DAT_CANDIDATE; 
local var 
 array POINTER[2*L] of pointers to DAT_CANDIDATE; 
 DAT_CANDIDATE C;  
begin 

1. // Work out sets { (r–B–t, B) | t = 0, …, width–1},  
    // see (2.1), Supplementary section 3 

1.1. // Pre–processing of the 1st elements of old candidate lists 
for all base pairs (A, B) from ROWB in ascending order by A do begin 
    for all t from 0 to width–1 do begin 

                      r = A+B–t; 
1.1.1        // Set POINTER[r]  to the 1st element of VAR_CANDIDATESTRIP[r] 
                     POINTER[r] = VAR_CANDIDATESTRIP[r]; 
1.1.2              // Delete 1st element of VAR_CANDIDATESTRIP[r] if it is obsolete 

       GetFirst(r);  
       if (Tmax ≤ B) then DeleteFirst(r); 

1.2.         // Processing of new candidates 
for all base pairs (A, B) from ROWB in ascending order by A do begin 
    for all t from 0 to  width–1 do begin 
         r = A+B–t; 

1.2.1               IncludeCandidate(A, B, r); 
     end 
end 
 
2. // Work out  sets {(r–B, B–t) | t = 1, …, width–1}, 
   //  see (2.1), Supplementary section 3 

2.1.         // Pre–processing of the 1st elements of old candidate lists 
for t=0; t < width; t++ do begin  
   B1 = B–t; 
   for all base pairs (A, B1) from ROWB1 in descending order by A do begin 
       r = A+B1; 

2.1.1        // Set POINTER[r]  to the 1st element of VAR_CANDIDATESTRIP[r] 
                     POINTER[r] = VAR_CANDIDATESTRIP[r]; 
2.1.2              // Delete 1st element of VAR_CANDIDATESTRIP[r] if it is obsolete 

       GetFirst(r);  
       if (Tmax ≤ B) then DeleteFirst(r); 

2.2. // Processing of new candidates 
for t=0; t < width; t++ do begin  
   B1 = B–t; 
   for all base pairs (A, B1) from ROWB1 in descending order by A do begin 
       r = A+B1; 

2.2.1              IncludeCandidate(A, B, r); 
     end 
end 

end. 
Algorithm S4. Function UpdateCandidate. 
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algorithm IncludeCandidate(input: u, v, r, B) 
// Tries to include the pair (u, v) to VAR_CANDIDATESTRIP[r] within update 
//   of the list VAR_CANDIDATESTRIP[r] from Candr,B to Candr,B+1. 
//   See section ”Algorithm:3.Function InternalLoopStripRow and candidate lists”. 
 var global 
 array VAR_CANDIDATESTRIP[2*L] of list of DAT_CANDIDATE; 
 array POINTER[2*L] of pointers to list of DAT_CANDIDATE; 
var local 
 DAT_CANDIDATE C;     // an element of VAR_CANDIDATESTRIP[r], 
                                                        // its components are C.x, C.y, C.dG, C.Tmin, C.Tmax 
 integer NEWmin, NEWmax;   
             float G, E1, G1;   
begin 
 G = ∆G r(u, v);                // See (4), sub-section 2.1 
 
  // 1.   Find putative successor of (u, v) in VAR_CANDIDATESTRIP[r],  
  //     i.e. the first element C with  v–u ≥ C.y – C.x; see Lemma 3.2, Supplementary 
section 4. 
 SetPointerToNext(u, v, r); 
  // 2. Kill obsolete successors 

while (POINTER[r] ≠ NIL) do begin  
    C = GetCurrent(r); 
    E1 = C.dG + fLen( (2*C.Tmax – r) – (C.y – C.x  + 2) ); 
    G1 = G   + fLen( (2*C.Tmax – r) – (v – u  + 2) ); 
    if (G1 ≤ E1 ) then  
       DeleteCurrent(r);           // POINTER[r] moves to the next element 
    else break; 
 end; 
 // 3. Kill obsolete predecessors 
POINTER[r] = Prev(POINTER[r]); 
while (POINTER[r] ≠ NIL) do begin  
    C = GET_CURRENT(r); 
    E1 = C.dG + fLen( (2*C.TMin – r) – (C.y – C.x + 2) ); 
    G1 = G + fLen( (2*C.TMin – r) – (v – u + 2) ); 
    if (G1 ≤ E1 ) then  
        DeleteCurrent(r);          // POINTER[r] moves to the next element 
        POINTER[r] = Prev(POINTER[r]); 
    else break; 
 end; 
 // 4. Calculate NEWmin i.e. Tmin for (u,v) 
// POINTER[r] points to the predecessor of (u, v) 
C = GetCurrent(r);  
if (C = NIL) then NEWmin = B+1 else begin 

   4.1.        NEWmin = min{C.Tmax+1, {t∈[ C.Tmin, C.Tmax] |G+ fLen( (2*t–r) – (u–v+2) ) >  
                                                                              > C.dG + fLen( (2*t – r) – (C.y – Cix  + 2) ) 
                                         } } 
                  if (NEWmin ≤ C.Tmax) then begin 

         SetCurrentTmax(r, NEWmin–1); 
    end 
end  
 
 // 5. Calculate NEWmax i.e. Tmax for (u,v) 
POINTER[r] = Next(POINTER[r]); 
C = GetCurrent(r);  
if (C = NIL) then NEWmax = L else begin 

   5.1.        NEWmax = max{C.Tmin–1, {t∈[ C.Tmin, C.Tmax] |G+ fLen( (2*t–r) – (u–v+2) ) >  
                                                                              > C.dG + fLen( (2*t – r) – (C.y – Cix  + 2) ) 

                            }} 
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                  if (NEWmax ≥ C.Tmin) then begin 
         SetCurrentTmin(r, NEWmax+1); 
    end 
end  
 

// 6. Insert (u, v, G) 
if (DN–1 < DP+1) then STOP ; 
InsertBeforeCurrent(r, u, v, G, DP+1, DN–1) ; 

end. 
 
Algorithm S5. Function IncludeCandidate. The function SetPointerToNext(u, v, r) moves 

Pointer[r] to the first element C in VAR_CANDIDATESTRIP[r] with v–u ≥ C.y – C.x; see 

Lemma 3.2, Supplementary section 4. The function GetCurrent(r) extracts the element 

Current(r) of VAR_CANDIDATESTRIP[r], i.e. one corresponding to the value of 

POINTER[r]. The function DeleteCurrent(r) deletes the element Current(r) from the list 

VAR_CANDIDATESTRIP[r] and moves POINTER[r] to the next element. Functions 

SetCurrentTmin and SetCurrentTmax change the values .Tmin and .Tmax of Current(r). 

Note that in 4.1 NEWmin > C.Tmin, otherwise the element C would be deleted at step 3. 

Analogously because of step 2, NEWmax < C.Tmax in line 5.1 
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Boolean function SetPointerToNext(input: u, v, r,B) 
//   Finds putative predecessor of (u, v) in VAR_CANDIDATESTRIP[r],  
//       i.e. the last element C with v–u ≤ C.y – C.x; see Lemma 3.2, Supplementary section 4. 
 
var global 
 array VAR_CANDIDATESTRIP[2*L] of list of DAT_CANDIDATE; 
 array POINTER[2*L] of pointers to list of DAT_CANDIDATE; 
var local 
 DAT_CANDIDATE C;    // elements of VAR_CANDIDATESTRIP[r] 
                                                        // its components are C.x, C.y, C.dG, C.Tmin, C.Tmax 
 float G; 
begin 
 G = ∆Gr(u, v);   // // See (4), section “Algorithm:1.Finding internal loops during 
                                         //                           construction of the optimal RNA structure”  
 C = GetCurrent(r); 

while ( v–u < C.y – C.x) do begin 
   if (G ≥ C.dG) then  return (FALSE); 
   POINTER[r] = Next(POINTER[r]);            
   if (POINTER[r] = NIL) then return (TRUE); 
   else C = GetCurrent(r); 

 end 
 if (v–u = C.y–C.x & G = C.E) then return (FALSE); 
 
Algorithm S6. Function SetPointerToNext; the candidate lists are implemented as 

ordinary lists. The function returns FALSE if the pairing (u, v) ∉ Candr,B+1 because of 

condition 1.1 of Lemma 3.2, see Supplementary section 4.  
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Section 1.  Sparse dynamic programming algorithms for the functions 
InternalLoopMainRow and InternalLoopStripRow 
 
Calculation of ∆GMain(A, B): general description of the algorithm 

To calculate the values ∆GMain(A, B) for all pairs (A, B) ∈ ROWB we use the divide 

and conquer algorithm. Let Z(p, q), where 1 ≤ p ≤ q ≤ L, denote the set of base pairs: 

Z(p, q) = ROWp ∪ … ∪ ROWq = {(x, y) | (x, y) ∈ U & p ≤ y ≤ q} 

 The core problem to be solved (with proper input data) on each step of the 

algorithm is the following  

 Problem S2. Input: 

1) integers p, k, q; 1 ≤ p < k ≤ q ≤ L; 

2) two sets of base pairs P ⊆ Z(p, k–1) and Q ⊆ Z(k, q);  

3) real weights F(x, y) for all (x, y) ∈ P. 

Goal: for all (A, B) ∈ Q, to calculate:  

    FPARTIAL(A, B; P) = min{F(x, y) + fLen((B–A) – (y–x+2)) | (x, y) ∈ P}                (1.1) 

 The algorithm referred to as E–algorithm below is a modification of the algorithm 

presented in Eppstein et al. (1992), section 3. The only difference between the E–

algorithm and the original algorithm is an explicit description of forward and backward 

zones, introduced to fit the framework of the OptimalRNA algorithm, see Supplementary, 

algorithm S1.  

 On the pre–processing step of the main algorithm OptimalRNA, see 

Supplementary, algorithm S1, line 1, we assign to each row B integers pB and qB, where pB 

< B ≤ qB. Sets Z(pB, B–1) and Z(B, qB) will be referred to as the backward and forward 

zones of B, respectively, and will be denoted as BACKWARDB and FORWARDB. 

Informally, the set of zones corresponds to the execution of the divide–and–conquer 

algorithm of Eppstein et al. (1992) and can be represented as 2–3 tree with ~ logL levels, 

in which a zone of k–th level contains no more than M/2k base pairs.  

For q, B ∈ [1, L], q > B let  

WORKEDZONES(q; B) = ∪ {BACKWARDk | k ≤ B < q ≤ qk} 
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In other words, WORKEDZONES(q; B) is a union of all backward zones 

BACKWARDk of all rows k below B, their forward zones FORWARDk contain ROWq.  

Statement S1. There is the algorithm of zone assignment meeting the following 

conditions: 

Z1. Each row ROWB belongs to O(logL) backward and forward zones. 

Z2. WORKEDZONES(B; B) = Z(1, B–1) for all B. 

Proof. The desired algorithm follows from the divide–and–conquer algorithm from 

Eppstein et al. (1992) and is presented in the Supplementary section 1. 

 

Implementation of InternalLoopMainRow(B) 

Let P ⊆ U and y < B for all (x, y) ∈ P and  

∆GMainPARTIAL(A, B;P)= min{∆G(x, y) + fLen((B–A) – (y–x+2)) | (x, y) ∈ P}   (1.2) 

To store the intermediate values of ∆GMain(p, q) the function 

InternalLoopMainRow uses global variables VAR_MAINWORK[x, y] assigned to each 

base pair (x, y) ∈ U (see agreement on names in the Introduction section). The variables 

are initialized with +∞ during the pre–processing step of the main algorithm OptimalRNA, 

see Supplementary, algorithm S1, line 1. After the call InternalLoopMainRow(B) the 

variable VAR_MAINWORK [x, y] equals  

∆GMainPARTIAL(x, y; WORKEDZONES(y; B))        (1.3) 

According to the statement Z2, after calls InternalLoopMainRow(k), k = 1, …, B, 

we thus will obtain for each (A, B) ∈ ROWB,  

VAR_MAINWORK [A, B] = ∆GMainPARTIAL(A, B; WORKEDZONES (B; B)) =  
= ∆GMainPARTIAL(A, B; Z(1, B–1))=  
= ∆GMain(A, B)          (1.4) 

Therefore, after all L calls InternalLoopMainRow(B), B ∈ [1, L], all variables 

VAR_MAINWORK [x, y], where (x, y) ∈ U will contain the desired values ∆GMain(x, y). 

To provide (1.3) and therefore (1.4), during the call InternalLoopMainRow(B) we 

solve the problem S2 with input data pB < B < qB, P = BACKWARDB, Q = FORWARDB; 

and weights ∆G(x, y). According to (1.1) and (1.2), for all base pairs (p, q) from Z(B, qB) 

we obtain the values ∆GMainPARTIAL(p, q; BACKWARDB). 

Then we update the values of VAR_MAINWORK [p, q] for all (p, q) ∈ Z(B, qB) by 

setting 
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VAR_MAINWORK [p, q] :=  
:= min{∆GMainPARTIAL(p, q; BACKWARDB), VAR_MAINWORK [p, q]} =  
= min{∆GMainPARTIAL(p, q; BACKWARDB),  
            ∆GMainPARTIAL(p, q; WorkedZones(q; B–1))} =  
 = ∆GMainPARTIAL(p, q; WorkedZones(q; B)) 

 

Solution of the problem S2 

The algorithm ECore for solving problem S2 is based on the Dynamic 

minimization procedure, described in the section 2 of Eppstein et al. (1992). Its run–time 

is O(N*logN), where N is the total number of base pairs in P ∪ Q, and the needed work 

space is O(N). ECore looks over all base pairs from P ∪ Q in descending order of their x–

coordinates, i.e. lower elements of base pairs. At a moment t ∈ [1, L] ECore stores the set  

ACTIVEt ⊆ {(x, y) | (x, y) ∈ P, x ≥ t}, 

which consists of all base pairs (x, y) from {(x, y) ∈ P, x ≥ t} that can provide minimum in 

(1.1) for some base pair (p, q) ∈ Q with p < t. 

 Since fLen is convex, the modification of the set ACTIVEt (if the current base pair 

belongs to P) and search in ACTIVEt (if the current base pair belongs to Q) can be 

performed on average in logN operations. The description of the data structure 

DAT_ACTIVE, used to store the current set ACTIVEt and details of Dynamic 

minimization procedure can be found in Eppstein et al. (1992), section 2.  

The run–time of call InternalLoopMainRow(B) is determined by the run–time of 

the procedure ECore and is O(N*logN), where N is a total number of base pairs in 

backward and forward zones of the B. Thus, (see statement Z1) the total time of all L calls 

of InternalLoopMainRow and the initialization is O(M*log2L).  
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Calculation of ∆GStrip(A, B) 

 The ES–algorithm implements the function InternalLoopStripRow, see 

Supplementary, algorithm S2 i.e.  calculates values ∆GStrip(A, B) for all pairs (A, B) ∈ U. 

The algorithm is given below.  Analogously to the E–algorithm it exploits SDP. 

Subroutines GetMinimumFromActive and UpdateActive follows Eppstein et al. (1992).  

 
Function InternalLoopStripRow_ES(input: B){ 
// Computes values ∆GStrip(A, B) for all (A, B) ∈ ROWB; 
// Updates variables VAR_STRIPWORK[A, B] for all (A, B) ∈ FORWARDB; 
data  
 array VAR_ACTIVESTRIP[L] of DAT_ACTIVE; 
begin 
 // 1. Pre–processing 
1.1. // Initialize VAR_ACTIVESTRIP 

for all base pairs (x, y) ∈ BACKWARDB ∪ FORWARDB  
       in descendant order by x, then in ascendant order by y do begin  
          r = x+y; 
          if (x, y) ∈ FORWARDB then begin 
       VAR_ACTIVESTRIP[r–B] := empty; 
          end  
           if (x, y) ∈ BACKWARDB then 
                for t from max{t–width+1, B+1}to min{t+width–1, 2*B–1} do begin 
                    VAR_ACTIVESTRIP[t–B] := empty 
                 end 
           end 
end 
 //  Main loop 

  2.    for all base pairs (x, y) ∈ BACKWARDB ∪ FORWARDB  
                   in descendant order by x, then in ascendant order by y do begin 

3.     r = x+y; 
4.     if (x, y) ∈ FORWARDB then begin 

        TEMP = GetMinimumFromActive(x, y, VAR_ACTIVESTRIP[r–B]); 
        VAR_STRIPWORK[x, y] = min{ TEMP, VAR_STRIPWORK[x, y] }; 
    end 

5.     if (x, y) ∈ BACKWARDB then 
        for t from max{ t–width+1, B+1}to min{ t+width–1, 2*B–1 } do begin 
              UpdateActive(x, y, VAR_ACTIVESTRIP[r–B]); 
        end 

             end 
        end 
end 
 

 

During the call InternalLoopStripRow(B), the ES–algorithm solves several copies of the 

Problem S2, each corresponding to a diagonal DIAGr, r = B+1, …, 2*B–1. For all copies 

the integer input values are pB, B and qB. Thus, we use the same zone assignment as for 

InternalLoopMainRow function. The input sets for the copy corresponding to a diagonal r 

are P = BACKWARDB ∩ STRIPr; Q = FORWARDB ∩ DIAGr; and the weight function 
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F(x,y) = ∆Gr(x, y), see (4). For each base pair (x, y) ∈ U we have a variable 

VAR_STRIPWORK[x, y] which is used analogously to the variable VAR_MAINWORK[x, 

y] of the previous section. 

 During the call InternalLoopStripRow(B), all B–1 copies of the Problem S2 are 

solved in a parallel way. To do this we use the array VAR_ACTIVESTRIP of length L, its 

elements are DAT_ACTIVE data structure (see sub–section “Solution of the problem S2”). 

The element VAR_ACTIVESTRIP[i] contains current value of the set ACTIVE for the copy 

of the Problem S2 corresponding to the diagonal DIAGB+i. For a base pair (x, y) ∈ 

BACKWARDB we first determine the range of r that (x, y) ∈ STRIPr, then we modify 

VAR_ACTIVESTRIP[r–B] for all r from the range. For a base pair (p, q) ∈ FORWARDB, 

we look for a desired minimum in VAR_ACTIVESTRIP[p+q–B].  

 Each (p, q) ∈ BACKWARDB belongs to at most 2*width–1 strips. Thus, total run 

time of all calls of InternalLoopStripRow is at most 2*width–1 times larger than the run 

time of InternalLoopMainRow. Therefore, the run–time of all calls of 

InternalLoopStripRow is O(width*M*log2L). 

 
Section 2.  Proof of Statement S1. 

Statement S1. There is the algorithm of zone assignment meeting the following 

conditions: 

Z1. Each row ROWB belongs to O(logL) backward and forward zones. 

Z2. WORKEDZONES(B; B) = Z(1, B–1) for all B. 

Proof. The algorithm follows the divide–and–conquer procedure from Eppstein et 

al. (1992). The zone tree is a rooted tree meeting following conditions. 

T1. The tree is 2–3 tree, i.e. each its inner node has 2 or 3 sons, the sons are 

ordered. The i–th son of a node V will be denoted as Son(V, i).  

T2. Each node V of the tree is assigned with a range of rows Range(V) = 

[s(V), t(V)]; here s(V) and t(V) are the first and the last row of the range; 

1 ≤ s(V) ≤ t(V) ≤ L. Size(V) denotes the size of the zone Z(s(V), t(V)), i.e. the total number 

of allowed base pairs in rows ROWs(V), …, ROWt(V).  

T3. If R is a root of the tree, then Range(R) = [1, L] = U.  

T4. Let V be an inner node of the tree. Then only one of 4 following relations 

between V and its sons are possible:  

4.1. V has two sons V1 and V2 and 

a) s(V1) = s(V); s(V2) = t(V1)+1; t(V2) = t(V); 
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b) Size(V) is even and Size(V1)= Size(V2)= Size(V)/2. 

4.2. V has two sons V1 and V2 and 

a) t(V1) = s(V1) = s(V); s(V2) = s(V)+1 = t(V1)+1; t(V2) = t(V); 

b) Size(V2) < Size(V)/2. 

4.3. V has two sons V1 and V2 and 

a) s(V1) = s(V); t(V1) = t(V)–1; s(V2) = t(V1)+1 = t(V2) = t(V); 

b) Size(V1) < Size(V)/2. 

4.4. V has three sons V1, V2, and V3 and  

a) s(V1) = s(V); t(V2) = s(V2) = t(V1)+1; s(V3) = t(V2)+1; t(V3) = t(V); 

b) Size(V1) < Size(V)/2; Size(V2) < Size(V)/2. 

T5. If V is a leaf, then its zone contains exactly one non–empty row.  

According Eppstein et al. (1992) we will define the zone tree for the given set U of 

base pairings by the following induction. 

E0. The initial tree T0 consists of the root R assigned with the zone Z(1, L). 

E1. Let we have a tree Tk meeting conditions T1–T4, and V is the first (according 

to the lexicographic order corresponding to the ordering of sons) leaf of Tk that does not fit 

T5; Range(V) = [s(V), t(V)]. The tree Tk+1 will be obtain by addition the sons of V 

according the following rules. 

E.1.1 Let Size(Z(s(V), s(V)) > Size(V)/2. Then we add two sons V1 and V2 and set 

s(V1) = t(V1) = s(V); s(V2) = s(V)+1; t(V2) = t(V). The nodes V, V1 and V2 correspond to the 

case 4.2. 

E.1.2. Let Size(Z(s(V), s(V)) ≤ Size(V)/2 and let  

b = max{d ≤ t(V) | Size(Z(s(V),d)) ≤ Size(V)/2}. 

Obviously, 1 ≤ b ≤ t(V)–1. If Size(Z(s(V), b) = Size(V)/2, then we add two sons V1 

and V2 and set s(V1) = s(V); t(V1) = b; s(V2) = b+1; t(V2) = t(V). This corresponds to the 

case 4.1.  

E.1.3. Let Size(Z(s(V), b) < Size(V)/2 and b = t(V)–1. We add two sons V1 and V2 

and set s(V1) = s(V); t(V1) = b = t(V)–1; s(V2) = b+1 = t(V); t(V2) = t(V); this corresponds to 

the case 4.3. 

E.1.4. Finally, let Size(Z(s(V), b) < Size(V)/2 and b ≤ t(V)–2. This implies 

Size(Z(t(V), t(V)) < Size(V)/2. In this case we add three new nodes V1, V2, V3 and assign 

them with zones as follows: 
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s(V1) = s(V); t(V1) = b; t(V2) = s(V2) = b+1; s(V3) = t(V2)+1 = b+2; t(V3) = t(V). 

Let’s show that this corresponds to the case 4.4. Indeed, if  

Size(V3) = Size(Z(b+2, t(V)) ≥ Size(V)/2 

then Size (Z(s(V), b+1)) ≤ Size(V)/2 that contradicts the definition of b. 

 Lemma 1.1.  

1. The described procedure converges to the zone tree ZT(U). 

2. The height of the obtained zone tree ZT(U) does not exceed logM. 

Proof. Let V be a node of an intermediate tree Tr, the level of V is k, and the range 

Range(V) contains at least two non–empty rows. One can see that in this case Size(V) ≤ 

M/2k . The lemma directly follows from this observation. 

Lemma 1.2  

1. Let B ∈[1, L] and the row ROWB is not–empty. Then there is exactly one leaf V 

of the tree ZT(U) such that B ∈ Range(V). If V is the leaf of ZT(U) then there is exactly 

one non–empty row B such that B ∈ Range(V). This defines the one–to–one 

correspondence between non–empty rows in U and leaves of ZT(U).  

 The leaf corresponding to the non–empty row B will be denoted as Leaf(B). 

 2. Let B, B’ are non–empty rows, B < B’. Then Leaf(B) precedes Leaf(B’) in 

lexicographic order of the nodes of ZT(U). 

 3. Let V is the leaf corresponding to the non–empty row B and V0 = R, V1, …, Vn = 

V are all nodes on the path from the root to V. Then for a node W of V 

B ∈ Range(W)  W ∈ { V0, V1, …, Vn } 

 Proof.  The next lemma follows from the definition of the zone tree. For the sake 

of brevity we do not give its proof here. 

 We say that the node V is weak if it is a root or is the 1st son of its parent. 

Otherwise, the node is strong.  

 Lemma 1.3.  

 1. Let B is non–empty row and it is not the first non–empty row, i.e. there is a non–

empty row b, where b < B. Then the path from the root R to the leaf Leaf(B) contains at 

least one strong node. 

 2. Let V be the last strong node on the path from the root R to the leaf Leaf(B). 

Then B is the first non–empty row in the Range(V). 

 Proof. Follows from the claim 2 of Lemma 1.2. 
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 Let B is the non–first non–empty row. The last strong node on the path from the 

root to the Leaf(B) will be denoted as Strong(B).  

 Now we are ready to describe the algorithm assigning zone borders pB, qB to all 

non–empty rows ROWB, B ∈[1, L], except of the first non–empty row. The algorithm 

consists of two steps. 

 A1. Create the zone tree ZT(U) according E0, E1. 

 A2. Let B be the non–first non–empty row; V = Strong(B) and W is a Parent of V. 

Then pB = s(W); qB = t(V). 

 

  Obviously, the run–time of the algorithm is O(L*logL). The claim Z1 follows from 

the claim 2 of Lemma 1.1 and the claim 3 of lemma 1.2. Consider the claim Z2. Let B be 

the non–first non–empty row. According to A2 B ∈ FORWARDx  B ∈ 

Range(Strong(x)).  

According to Lemma 1.2, claim 3, this implies 

B ∈ FORWARDx  Strong(x) belongs to the path from the root to Strong(B)     (2.1) 

 

 The claim Z2 can be proven by induction on the number of strong nodes on the 

path from the root to Strong(B). Suppose, that the path does not contain strong nodes. 

Then all these nodes are weak and thus for the farther of Strong(B) we have s(W) = 1. 

Then pB = 1 and BACKWARDB = [1, B–1]. Let Strong(B’) is the last strong node the path 

from the root to Strong(B). Obviously, B’ < B and by induction  

WORKEDZONES(B’; B’) = Z(1, B’–1)        (2.2) 

According to (2.1) and because of definition of B’, 

WORKEDZONES(B’; B’) ∈ WORKEDZONES(B; B)      (2.3) 

Analogously to the basic of induction we can show that  

BACKWARDB = Z(s(Strong(B’), B–1)        (2.4) 

According to the Lemma 1.3, claim 2,  

Z(s(Strong(B’), B–1) = Z(B’, B–1)         (2.5) 

Now the claim Z2 follows from (2.2) – (2.5) 



 20

Section 3. Proof of Statement 1. 
 

Statement 1. Let (x1, y1), …, (xn, yn) be all (r, B)–candidates, ordered by decrement of di = 

yi–xi. Then, 

 1. All values y1–x1, …, yn–xn are different, i. e. y1–x1 > … > yn–xn; 

 2. ∆Gr(x1, y1) > … > ∆Gr(xn, yn); 

 3. There are values T0 = B–1 < T1 < … < Tn–1 < Tn = L such that HOMEr,B(xi, yi) = 

[Ti–1+1, Ti]. 

Proof. 

 1 Suppose that yi–xi = yi+1–xi+1. If, e.g. ∆Gr(xi, yi) < ∆Gr(xi+1, yi+1), then for all (p, q) 

∈ DIAGr  

∆Gr(xi, yi) + fLen((q–p) – (yi–xi+2)) < ∆Gr(xi+1, yi+1) + fLen((q–p) – (yi+1–xi+1+2)), or 
  ∆GIStruct(xi, yi; p, q) < ∆GIStruct(xi+1, yi+1; p, q),  

and (xi+1, yi+1) cannot be a (r, B)–candidate. Then, ∆Gr(xi, yi) = ∆Gr(xi+1, yi+1). In this case, 

according to (c) of the definition of OWNERr,B(q, p), only one of pairs (xi, yi), (xi+1, yi+1) 

can be a (r, B)–candidate. The contradiction proves the statement.  

2. By definition, for al i < n we have: yi–xi > yi+1–xi+1, and thus for any (p, q) ∈ 

DIAGr, p+q = r, q ≥ B  

(q–p) – (yi–xi +2) < (q–p) – (yi+1–xi+1+2) 

Function fLen increases monotonously, thus  

fLen((q–p) – (yi–xi +2)) < fLen((q–p) – (yi+1–xi+1+2))       (3.1) 

Now one can see that ∆Gr(xi, yi) ≤ ∆Gr(xi+1, yi+1) together with (3.1) implies that for all 

(p, q) ∈ DIAGr, p+q = r, q ≥ B  

∆Gr(xi, yi) + fLen((q–p) – (yi–xi+2)) < ∆Gr(xi+1, yi+1) + fLen((q–p) – (yi+1–xi+1+2)) 

The latter is impossible, because (xi+1, yi+1) is the (r, B)–candidate. 

 

 3. The statement utilizes the convexity of the function fLen and follows from the 

lemma given below (see also Eppstein et al. (1992)). 

 Lemma 2.1. Let (A, B), (A’, B’) ∈ U; A+B = A’+B’ = r; and B’ > B.  

Let (x, y), (x’,y’) ∈ U(A, B) ⊂ U(A’, B’), and y–x < y’–x’ and 

∆Gr(x, y) + fLen((B–A) – (y–x+2)) < ∆Gr(x’, y’) + fLen((B–A) – (y’–x’+2))    (3.2) 
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Then 

∆Gr(x, y) + fLen((B’–A’) – (y–x+2)) < ∆Gr(x’, y’) + fLen((B’–A’) – (y’–x’+2)) 

 Proof. We have to prove that  

fLen((B’–A’) – (y–x+2)) – fLen((B’–A’) – (y’–x’+2)) < ∆Gr(x’, y’) – ∆Gr(x, y)  

According to (3.2) it is enough to prove that  

fLen((B’–A’) – (y–x+2)) – fLen((B’–A’) – (y’–x’+2)) <  
       < fLen((B–A) – (y–x+2)) – fLen((B–A) – (y’–x’+2))  

or, equivalently, 

fLen((B’–A’) – (y–x+2)) + fLen((B–A) – (y’–x’+2))<  
            < fLen((B’–A’) – (y’–x’+2)) + fLen((B–A) – (y–x+2))     (3.3) 

 

Note, that  

[(B’–A’)–(y–x+2)] + [(B–A) – (y’–x’+2)] =  
[(B’–A’)–(y’–x’+2)] + [(B–A) – (y–x+2)]        (3.4) 

and 

0 < [(B–A) – (y’–x’+2)] < [(B’–A’)–(y’–x’+2)] < [(B’–A’) – (y–x+2)]    (3.5)  
0 < [(B–A) – (y’–x’+2)] < [(B–A)–(y–x+2)] < [(B’–A’) – (y–x+2)]     (3.6) 

Now (3.3) follows from convexity of the function fLen together with (3.4), (3.5) and (3.6).  
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Section 4. Proof of Statement 2, part 1. 
 
 Statement 2.  

 1. The function InternalLoopStripRow_G(B) correctly calculates values 

∆GStrip(A,B) within the algorithm OptimalRNA_G. 

 2. The total run–time of calls InternalLoopStripRow_G(B) and 

UpdateCandidate(B) within the work of the algorithm OptimalRNA_G (see 

Supplementary, algorithms S3–S5) O(width*M*logL), fLen(x) is supposed to be a convex 

function, its the value can be calculated in constant time. 

 3. If fLen(x) is logarithmic function, then the total run–time of calls 

InternalLoopStripRow_G(B) and UpdateCandidate(B) within the work of the algorithm 

OptimalRNA_G  (see Supplementary, algorithms S3–S5) is O(width2*M), the value fLen(x) 

is supposed to be calculated in constant time. 

 4. The workspace of the OptimalRNA_G is O(L) + O(width*M) 

 Proof. 1. The implementation of InternalLoopStripRow_G(B) is shown in 

Supplementary, algorithm S3 Suppose, that before the call InternalLoopStripRow_G(B) 

the variable VAR_CANDIDATESTRIP[r] contains the candidate list CANDr,B. Consider 

the pairing (A, B) ∈ ROWB and let r = A+B. The function GetFirst(r) gets the 1st element 

C = (C.x, C.y, C.dG, C.Tmin, C.Tmax) of the list VAR_CANDIDATESTRIP[r] = CANDr,B. 

According to statement 1, (C.x, C.y) = OWNERr,B(r–B, B)= OWNERA+B,B(A, B). Thus, the 

value ∆GStrip(A, B) can be calculated as  

∆GStrip(A, B) = ∆GA+B(C.x, C.y) + fLen(((A+B) – 2*B) – (C.y–C.x+2)) 

 To finish the proof we have to show that UpdateCandidate(B) correctly updates 

candidate lists. To update the list VAR_CANDIDATESTRIP [r] from CANDr,B to 

CANDr,B+1 one has to work up base pairs from the set 

DELTAr,B = STRIPPREDr(B+1)\ STRIPPREDr(B). 

Note, that  

DELTAr,B ⊆ {(r–B+t, B)|t = 0, 1, …, width–1} ∪ {(r–B, B–t)|t = 1, …, width–1}  

We first work out all new candidates that belong to ROWB (see line 1.1, 

Supplementary algorithm S4, then all other candidates (see line 1.2). This determines the 

ordering of all elements of DELTAr,B: (u1, v1), (u2, v2), …, (us, vs). Let Dj(r, B) = 

STRIPPREDr(B) ∪ {(u1, v1), …, (uj, vj)}. Obviously,  
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D0(r, B) = STRIPPREDr(B);  
Ds(r,B) = STRIPPREDr(B+1). 

 Let (p, q) ∈ DIAGr, q ≥ B+1, r = p+q. Analogously to OWNERr,B(p, q) ∈ 

STRIPPREDr(B), we define TEMPOWNERr,B(p, q, j) ∈ Dj(r, B) as a minimal element 

according the ordering: (x, y) <⊗ (x’, y’) defined in the sub-section “2.3.Function 

InternalLoopStripRow and candidate lists”. We say that (x, y) ∈ Dj(r, B) is an (r, B, j)–

candidate if (x, y) = TEMPOWNERr,B(p, q, j) for some (p, q) ∈ U, q ≥ B+1. 

 Lemma 3.1. Statement 1 is valid for the lists of (r, B, j)–candidates. I. e. let (x1, y1), 

…, (xn, yn) be all (r, B, j)–candidates, ordered by decrement of di = yi–xi. Then, 

 1.1. All values y1–x1, …, yn–xn are different, i. e. y1–x1 > … > yn–xn; 

 1.2. ∆Gr(x1, y1) > … > ∆Gr(xn, yn); 

 1.3. There are values T0 = B < T1 < … < Tn–1 < Tn = L such that HOME r,B,j(xi, yi) = 

[Ti–1+1, Ti], where (r, B, j)–home HOME r,B,j(x, y) of the (r, B, j)–candidate (x, y) is a set of 

all q such that B ≤ q < r and (x, y) = OWNERr,B,j(r–q, q).  

 Proof. is exactly the same as for Statement 1. See Supplementary section 3. 

Let CANDr,B,j–1 = {Ci}, i = 1,…, N; Ci = <Ci.x, Ci.y, Ci.dG, Ci.Tmin, Ci,Tmax>. Consider j 

∈ {1, …, s} and let (u, v) = (uj, vj) ∈ DELTAr,B and G = ∆Gr(u, v), see (4). Let further Cd 

= <PREV.x, PREV.y, PREV.dG, PREV.Tmin, PREV,Tmax> be the last element of 

CANDr,B,j–1 with PREV.y– PREVx ≥ v–u. We set d=0 if v–u. > Ci.y – Ci.x for all i = 1,…, 

N. Let’s define Start(u, v; i), where i ≤ d as  

Start(u, v; i) =  
 = min{ Ci.Tmax+1∪ … ∪{t∈[Ci.Tmin, Ci.Tmax] |  
      | G+fLen((2*t –r) – (u–v+2)) < Ci.dG+fLen((2*t –r)–(Ci.y–Ci.x +2))}  
           } 

Analogously, for i > d we define  

End(u, v; i) =  
 = max{ Ci.Tmin–1 ∪ … ∪{ t∈[Ci.Tmin, Ci.Tmax] |  
      | G+fLen((2*t –r) – (u–v+2)) < Ci.dG+fLen((2*t –r)–(Ci.y–Ci.x +2))}  
           } 

Finally, let  

Start(u, v) = Start(u, v; d), if d ≥ 1;           Start(u, v) = B+1 otherwise;  
End(u, v) = End(u, v; d+1), if d ≤ N;        End(u, v) = L otherwise; 

Lemma 3.2. 
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1. (u, v) ∈ CANDr,B,j if and only if  

1.1. G < PREV.dG and 

1.2. End(u, v; i) > Start(u, v; i) 

2. Let i ≤ d. Then Ci ∈ CANDr,B,j if and only if Gpred(i) > Epred(i), where 

Epred(i) = Ci.dG + fLen( (2*Ci.Tmin – r) – (Ci.y – Ci.x + 2) );  
Gpred(i) = G + fLen( (2*Ci.Tmin – r) – (v – y + 2) ); 

3. Let i > d. Then Ci∈ CANDr,B,j if and only if Gsucc(i) > Esucc(i), where 

Esucc(i) = Ci.dG + fLen( (2*Ci.Tmax – r) – (Ci.y – Ci.x + 2) );  
Gsucc(i) = G + fLen( (2*Ci.Tmax – r) – (v – y + 2) ); 

 4. Let (u, v) ∈ CANDr,B,j. and Ci ∈ CANDr,B,j–1 is the immediate predecessor of (u, 

v) in CANDr,B,j. Then the value Tmin corresponding to (u, v) can be found as  

Tmin =  
= min{t | G+fLen((2*t – r)–(u–v+2)) ≤ Ci.dG+fLen((2*t – r) – (Ci.y–Ci.x +2))}=  
= Start(u, v; i)  

5. Let (u, v) ∈ CANDr,B,j. and Ci ∈ CANDr,B,j–1 is the immediate successor of (u, v) 

in CANDr,B,j. Then the value Tmax corresponding to (u, v) can be found as  

Tmax =  
= max{t | G+fLen((2*t – r)–(u–v+2)) < Ci.dG + fLen((2*t – r) – (Ci.y – Ci.x + 2)}=  
= End( u, v; i) 

Proof. See Supplementary section 6. 

The function IncludeCandidate directly follows Lemma 3.2, its steps correspond to 

the claims of the Lemma. The only difference is that we avoid checking condition 1.2 at 

step 1 and do this only at step 6. This completes the proof of the 1st part of the Statement 

2. 
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Section 5.  Proof of Statement 2, parts 2, 3. 
 

 Statement 2.  

 1. The function InternalLoopStripRow_G(B) correctly calculates values ∆GStrip(A, 

B) within the algorithm OptimalRNA_G. 

 2. The total run–time of calls InternalLoopStripRow_G(B) and 

UpdateCandidate(B) within the work of the algorithm OptimalRNA_G  (see 

Supplementary, algorithms S3–S5) O(width*M*logL), fLen(x) is supposed to be a convex 

function, its the value can be calculated in constant time. 

 3. If fLen(x) is logarithmic function, then the total run–time of calls 

InternalLoopStripRow_G(B) and UpdateCandidate(B) within the work of the algorithm 

OptimalRNA_G  (see Supplementary, algorithms S3–S5)  is O(width2*M), the value fLen(x) 

is supposed to be calculated in constant time. 

 4. The workspace of the OptimalRNA_G is O(L) + O(width*M) 

 Proof. The total run time of all calls of InternalLoopStripRow_G, see 

Supplementary, algorithm S3 is O(M), because the call for the given (A, B) ∈ U the call 

GetFirst(B, A+B) and the computation of VAR_STRIPWORK[A, B] can be performed in a 

constant time. 

 The pre–processing steps of the function UpdateCandidate, see lines 1.1 and 2.1, 

Supplementary algorithm S4 are performed in O(width*M) time, because each of call of 

lines 1.1.1, 1.1.2, 2.1.1, 2.1.2 is performed in constant time and each of these lines is 

called O(width*M) times. 

 To accomplish the proof we have to consider the function IncludeCandidate, see 

Supplementary algorithm S5, its steps correspond to the claims of Lemma 3.2, see 

Supplementary section 4. Step 1 is the most tiresome one and we will consider it at the 

end of the section.  

 The total run–time T2,3 of steps 2 and 3 during all calls of IncludeCandidate can be 

represented as  

T2,3 = O(NIncl) + O(NDel*TDel) 

where NIncl is the number of calls of IncludeCandidate, NDel is the number of calls of 

DeleteCurrent, and TDel is the time needed to delete the current element of the candidate 

list. Each pairing (x, y) ∈ U can be included only in O(width) lists, therefore NIncl = 
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O(width*M). In turn, each (x, y) ∈ U can be deleted from each candidate list at most once. 

Thus, NDel = O(width*M). The time TDel is O(1) if we represent candidate lists as ordinary 

lists and O(logL) if tree–like structure is utilized (see below). Therefore we have  

T2,3 = O(width*M*TDel)          (5.1) 

where  

TDel = O(1) or TDel = O(logL)          (5.2) 

 Analogously, for the total run–time T6 of steps 6during all calls of 

IncludeCandidate we have 

T6 = O(NIncl*TIns) = O(width*M*TIns)        (5.3) 

where TIns is the time needed to insert the new element of the candidate list. Depending of 

the chosen implementation  

TIns = O(1) or TIns = O(logL)          (5.4) 

 The total run–time T4,5 of steps 4 and 5 during all calls of IncludeCandidate is 

O(NIncl*TRoot), where TRoot is the time needed to find values of DP and DN, see lines 4.1 

and 5.1. If fLen(x) is logarithmic function this can be done in constant time. In case of a 

general convex function, the binary search (see Lemma 2.1, Supplementary section 3) 

leads to TRoot = O(logL). Therefore, we again obtain two variants of formula for T4,5: 

T4,5 = O(width*M*logL)          (5.5) 

for the arbitrary convex function fLen and  

T4,5 = O(width*M)           (5.6) 

if fLen is logarithmic function. 

 Now we come to the step 1. The total run–time T1 of this step 5 during all calls of 

IncludeCandidate can be represented as  

T1 = O(NIncl*TFind) = O(width*M*TFind),        (5.7) 

where TFind is the average run–time of the function SetPointerToPred, i.e, needed to locate 

in the candidate list the putative predecessor of the given pairing (u, v), see Lemma 3.2, 

Supplementary section 4. The function SetPointerToPred can be implemented in several 

ways. First, we can represent the lists as balanced trees (see, e.g. Aho et al., 1974) and this 

gives us  

TFind = O(logL). 
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In combination with (5.1), (5.3), (5.5) and (5.7) this gives us the desired estimation of the 

overall run–time. However, the other bounds are also possible. We can represent 

candidate lists as ordinary lists and obtain 

TFind = O(width) 

that with (5.7) and the above estimations T2,3, T4,5, and T6 for gives estimation 

O(width2*M) both for T1 and for overall run–time. This proves the claim 3 of the 

statement 2. 

The workspace of the algorithm OptimalRNA_G is determined by the space 

needed to store the candidate lists. Note, that each (x, y) ∈ U can belong at most to 

O(width) lists. The claim 4 follows from the above observations. 
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Section 6. Proof of Lemma 3.2. 
 

Let  DELTAr,B: {(u1, v1), (u2, v2), …, (us, vs)}, see notation in the Supplementary section 4. 

Consider j∈ {1, …, s}. Let CANDr,B,j-1 = {Ci}, i = 1,…, N; Ci =  <Ci.x, Ci.y, Ci.dG, 

Ci.Tmin, Ci.Tmax>. Let further (u, v) = (uj, vj) ∈ DELTAr,B; G = ∆Gr(u, v), see (4) and  

Cd = <PREV.x, PREV.y, PREV.dG, PREV.Tmin, PREV.Tmax> 

be the last element of CANDr,B,j-1  with PREV.y – PREVx ≥ v–u. We set d = 0 if v–u > Ci.y 

– Ci.x for all i = 1, …, N. Let’s define Start(u, v; i), where i ≤ d as  

Start(u, v; i) =  
 = min{ Ci.Tmax+1∪ … ∪{t∈[Ci.Tmin, Ci.Tmax] | 
       | G+fLen((2*t –r) – (u–v+2)) < Ci.dG+fLen((2*t –r)–(Ci.y–Ci.x +2))}  
           } 

Analogously, for i > d we define  

End(u, v; i) =  
 = max{ Ci.Tmin–1 ∪ … ∪{ t∈[Ci.Tmin, Ci.Tmax] | 
         | G+fLen((2*t –r) – (u–v+2)) < Ci.dG+fLen((2*t –r)–(Ci.y–Ci.x +2))}  
            } 

Finally, let  

Start(u, v) = Start(u, v; d),  if d ≥ 1; Start(u ,v) = B+1 otherwise;  
End(u, v) = End(u, v; d+1), if d ≤ N; End(u, v) = L otherwise; 

Lemma 3.2. 

 1. Let (u, v) ∈ CANDr,B,j. Then G < PREV.dG and 

2. (u, v) ∈ CANDr,B,j if and only if Start(u, v) ≤ End(u, v) 

 3. Let (u, v) ∈ CANDr,B,j . Then G < PREV.dG and 

4. Let i ≤ d. Then Ci∈ CANDr,B,j if and only if Gpred(i) > Epred(i), where 

Epred(i) = Ci.dG + fLen( (2*Ci.Tmin – r) – (Ci.y – Ci.x  + 2) );  
Gpred(i) = G + fLen( (2*Ci.Tmin – r) – (v – u + 2) ); 

5. Let i > d. Then Ci∈ CANDr,B,j if and only if  Gsucc(i) > Esucc(i),   where 

Esucc(i) = Ci.dG + fLen( (2*Ci.Tmax – r) – (Ci.y – Ci.x  + 2) );  
Gsucc(i) = G   + fLen( (2*Ci.Tmax – r) – (v – u  + 2) ); 

 6. Let (u, v) ∈ CANDr,B,j and Ci ∈ CANDr,B,j-1 is the immediate predecessor of  

                (u, v) in CANDr,B,j. Then the value Tmin corresponding to (u, v) can be found as  
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Tmin  =  
= min{t| G+fLen((2*t – r)–(u–v+2)) ≤ Ci.dG+fLen((2*t – r) – (Ci.y–Ci.x +2))} = 
= Start(u,v; i)  

7. Let (u, v) ∈ CANDr,B,j. and Ci ∈ CANDr,B,j-1 is the immediate successor of (u, v) 

in CANDr,B,j. Then the value Tmax corresponding to (u, v) can be found as  

Tmax = max{t|G+fLen((2*t – r)–(u–v+2)) < Ci.dG + fLen((2*t – r) – (Ci.y – Ci.x + 2))} 

 Proof. We will consider in details only the Claim 1, 2. The other claims can be 

proved with similar technique based on Lemma 2.1, see Supplementary section 3. 

 1. 

 (u, v) ∈ CANDr,B,j           (6.1) 

Then G ≥ PREV.dG is impossible, otherwise, for all (r – q, q) with q ≥ B+1 we will have  

PREV.dG + fLen( (2*q– r) – (PREV.y – PREV.x  + 2)) ≤  
            < G + fLen( (2*q – r) – (v – u  + 2) )        (6.2) 

and therefore (u, v) ∉ CANDr,B,j.  

 2. ( -> ) Let’s suppose that (u, v) ∈ CANDr,B,j and  

 Start(u,v) > End(u,v).           (6.3) 

We shall show that (6.3) also contradicts (6.1). If (6.3) holds, then Start(u,v) > B+1. 

Therefore 1 ≤ d ≤ N and thus  

Start(u, v) = Start(u, v;d) =  
 = min{ Cd.Tmax+1∪ … ∪{t∈[Cd.Tmin, Cd.Tmax]  
  | G+fLen((2*t –r) – (u–v+2)) < Cd.dG+fLen((2*t – r)–(Cd.y–Ci.x +2))}  
    } 

For d < N we have Cd+1.Tmin–1 = Cd.Tmax therefore, taking in account the definition of 

End(u, v), (6.3) implies d < N;  

Start(u, v) = Cd.Tmax+1;  
End(u, v) = Cd+1.Tmin–1 = Cd.Tmax = Start(u, v)–1       (6.4)  

or d = N;  

Start(u, v) = Cd.Tmax+1 = L+1;  
End(u, v) = L            (6.5) 

For brevity, we will consider only case (6.4). In this case d < N and Cd+1.Tmin = 

Cd.Tmax+1. According to (6.4), for all t ∈ [Cd.Tmin, Cd.Tmax] 

 G+fLen((2*t – r) – (u–v+2)) ≥ Cd.dG+fLen((2*t – r)–(Cd.y–Cdx +2))     (6.6) 
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and for all t∈[C d+1.Tmin= Cd.Tmax+1, C d+1.Tmax] 

G+fLen((2*t – r) – (u–v+2)) ≥ Cd+1.dG+fLen((2*t – r)–(Cd+1.y–Cd+1.x+2))    (6.7) 

 According to (6.1) let  

(u, v) = OWNERr,B,j(r–q, q)           (6.8) 

for some q ≥ B+1. We have to consider separately two cases: (i) q ≤ Cd.Tmax and (ii) q ≥ 

Cd+1.Tmin = Cd.Tmax+1. In case (i). Lemma 2.1 (see Supplementary section 3) and (6.4) 

imply  

 G+fLen((2*q – r) – (u–v+2)) ≥ Cd.dG+fLen((2*q – r)–(Cd.y–Cd.x+2))    (6.9) 

and in case (ii) Lemma 2.1 (see Supplementary section 3) and (6.5) imply 

G+fLen((2*q – r) – (u–v+2)) ≥ Cd+1.dG+fLen((2*q – r)–(Cd+1.y–Cd+1.x+2))  (6.10) 

Formulae (6.9), (6.10) contradict (6.8) and therefore contradict (6.1). This completes proof 

of the claim 2 of Lemma 3.2, case (->). 

 

2 (<-) . Let  

 Start(u, v) ≤ End(u, v).         (6.11) 

Our goal is to prove that (u, v) ∈ CANDr,B,j .Analogously to case 1a, (6.11) implies 

(cf. (6.4) and (6.5) ) 

Start(u,v) = Start(u,v;d) = min{t∈[Cd.Tmin, Cd.Tmax]  
| G+fLen((2*t – r) – (u–v+2)) < Cd.dG+fLen((2*t – r)–(Cd.y–Cd.x+2))}  (6.12)  
End(u, v) = End(u, v; i) = max{ t∈[Cd+1.Tmin, Cd+1.Tmax]  
| G+fLen((2*t – r) – (u–v+2)) < Cd+1.dG+fLen((2*t – r)–(Cd+1.y–Cd+1.x+2))} (6.13) 

 For example, let’s (6.12) is true, case of (6.13) can be treated in the same way. Let 

q= Cd.Tmax. (6.13) implies   

 G+fLen((2*q – r) – (u–v+2)) < Cd.dG+fLen((2*q –r)–(Cd.y–Cd.x+2))   (6.14) 

But (Cd.x, Cd.y) = OWNERr,B,j–1(r–q, q) and therefore, for all (x, y) ∈ Dr,B,j–1  

 Cd.dG+fLen((2*q–r)–(Cd.y–Cd.x+2)) < Ci.dG+fLen((2*q–r)–(Ci.y–Ci.x+2))  (6.15) 

Formulae (6.14), (6.15) imply that (u, v) = OWNERr,B,j-1(r–q, q) and thus (u, v) ∈ 

CANDr,B,j. This completes the proof of case 1b. 
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Section 7.  The algorithm MLF_E. 
 

Below we give the implementation of the Algorithm MLF_E. The presentation is 

extended compared to Supplementary, algorithm S1; the arrays BACKWARDZONE, 

FORWARDZONE, VAR_MAINWORK, VAR_STRIPWORK and the functions 

InternalLoopMainRow(B); InternalLoopStripRow_ES(B) are given explicitly, see previous 

sections. 
 
algorithm MLF_E( input: sequence RNA)  
var global 
 int BACKWARDZONE[L], FORWARDZONE[L]; 
 real VAR_MAINWORK[U], VAR_STRIPWORK[U]; 
begin 

  // 1. Pre–processing 
1.1.              for all base pairs (A, B) ∈ U do begin 

                   VAR_MAINWORK[A, B] := ∞; 
                   VAR_STRIPWORK[A, B] := ∞; 
         end 

1.2.             Compute BACKWARDZONE[B] and FORWARDZONE[B], B= 1, …, L  
 

// The main loop 
2.              for all B: (1 ≤ B ≤ L) in increasing order do begin  
2.1                   HairpinRow(B); 
2.2.                  SimpleLoopRow(B); 
2.3.1.               InternalLoopMainRow(B); 
2.3.2.            InternalLoopStripRow_ES(B); 
2.3.3.             for all A: ( (A, B) ∈ ROWB ) in decreasing order do begin 
                             VAR_MAINWORK[A, B] :=  

    := min{ VAR_MAINWORK[A, B],     VAR_STRIPWORK[A, B] } 
               end 

2.4.               OptimalLoopRow(B);  
 

          end 
 
  // Post–processing 

3. Find min{ VAR_MAINWORK[A, B] | (A, B) ∈ U } 
 
end 

 


