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The complexity of biological processes arises not only from the 
set of expressed genes but also from quantitative differences 
in their expression levels. As a classic example, some genes 

are haploinsufficient and thus sensitive to a 50% decrease in expres-
sion, whereas other genes are permissive to far stronger depletion1. 
Enabled by tools to titrate gene expression levels, such as series 
of promoters or hypomorphic mutants, the underlying expres-
sion–phenotype relationships have been explored systematically in 
yeast2–4 and bacteria5–8. These efforts have revealed gene- and envi-
ronment-specific effects of changes in expression levels4 and yielded 
insight into the opposing evolutionary forces that determine gene 
expression levels, including the cost of protein synthesis and the 
need for robustness against random fluctuations3,6,8.

The availability of equivalent tools in mammalian systems would 
enable similar efforts to probe expression–phenotype relationships 
in more complex models. In addition, such tools could be used to 
identify the functionally sufficient levels of gene products, which 
can serve as targets for rescue by gene therapy or chemical treat-
ment, or as targets of inhibition for anticancer drugs. It is possible 
to titrate the expression of individual genes in mammalian systems 
by incorporating microRNA-binding sites of varied strength into 
the 3′-UTR of the endogenous locus9 or using synthetic promot-
ers and regulators10, but these approaches require engineering of the 
endogenous locus for each target, limiting scalability and transfer-
ability across models. The development of artificial transcription 
factors, such as transcription activator-like effectors (TALEs)11 
or the CRISPR-based effectors underlying CRISPR interference 
(CRISPRi) and activation (CRISPRa)12, has now provided tools to 
systematically knock down or overexpress genes in mammalian 

models. CRISPR-Cas9-based systems, in particular, have attracted 
considerable attention due to the exquisite programmability of tar-
geting a locus via sequence complementarity to an associated sin-
gle-guide RNA (sgRNA)13. Thus far, however, these tools have been 
primarily optimized for strong knockdown or overexpression14,15 
and do not afford nuanced control over gene expression levels.

Studies of the targeting mechanisms of Cas9 and its nuclease-
dead variants (dCas9) have established that both activity and 
binding can be modulated by introducing mismatches into the 
sgRNA-targeting region, modifying the sgRNA constant region, 
or adding hairpin extensions13,16–20. In addition, (d)Cas9 activity 
can be controlled using small molecules, degrons, or anti-CRIS-
PRs21–24, but these approaches generally have not been optimized 
to afford precise control over activity levels and can be challenging 
to transfer across models. Here, we report a systematic approach 
to control DNA binding of dCas9 effectors through modified 
sgRNAs as a general method to titrate gene expression in mam-
malian cells. We describe both an empirically validated compact 
sgRNA library to titrate the expression of essential genes and a 
genome-wide in silico library derived from deep-learning analysis 
of the empirical data. As a starting point for analyses of expres-
sion–phenotype relationships in mammalian cells, we examined 
transcriptional phenotypes derived from single-cell RNA-seq at 
various expression levels of 25 essential genes. Our data reveal 
gene-specific expression–phenotype relationships and expression-
level-dependent cell responses at single-cell resolution, highlight-
ing the utility of systematically attenuated sgRNAs in staging cells 
along a continuum of expression levels to explore fundamental 
biological questions.
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Results
Mismatched sgRNAs mediate diverse intermediate phenotypes. 
To comprehensively characterize the activities of mismatched 
sgRNAs in CRISPRi-mediated knockdown, we measured the 
knockdowns mediated by all 57 singly mismatched variants of a 
green fluorescent protein (GFP)-targeting sgRNA25 (Fig. 1a). K562 
cells harboring mismatched sgRNAs experienced knockdown lev-
els between those of cells with perfectly matched sgRNA (94%) 
and cells with nontargeting control sgRNA (Fig. 1b, Supplementary  
Fig. 1a–c and Supplementary Table 1). As expected, sgRNAs with 
mismatches in the protospacer adjacent motif (PAM)-proximal seed 
region13,16 had strongly attenuated activity. In contrast, sgRNAs with 
mismatches in the PAM-distal region mediated GFP knockdown to 
an extent similar to that of the unmodified sgRNA, albeit with sub-
stantial variability depending on the type of mismatch (Fig. 1b,c). 
The distributions of GFP levels with mismatched sgRNAs were 
largely unimodal, although the distributions were typically broader 
than those with the perfectly matched sgRNA or the control sgRNA 
(Fig. 1b and Supplementary Fig. 1c). These results suggest that 
series of mismatched sgRNAs can be used to titrate gene expres-
sion at the single-cell level, but that mismatched sgRNA activity is 
modulated by complex factors.

Rules of mismatched sgRNA activity derived from a large-scale 
screen. We reasoned that we could empirically derive the factors 
governing the influence of mismatches on sgRNA activity by mea-
suring growth phenotypes imparted by a large number of mis-
matched sgRNAs in a pooled screen. For this purpose, we generated 
a ~120,000-element library comprising series of variants for 4,898 
sgRNAs targeting 2,449 genes with growth phenotypes in K562 
cells14. Each individual series, herein referred to as an allelic series, 
contains the original, perfectly matched sgRNA and 22–23 variants 
harboring one or two mismatches (the first nucleotide of the sgRNA 
was held as a G regardless of its match in the genome; Fig. 2a, 
Supplementary Table 2 and Methods). We then measured CRISPRi 
growth phenotypes (γ; a more negative value indicates a stronger 
growth defect) for each sgRNA in both K562 and Jurkat cells using 
pooled screens18,26 (Fig. 2b, Supplementary Fig 2a,b and Methods). 
Growth phenotypes of targeting sgRNAs were well correlated in 
replicate screens (Supplementary Fig 2a,b and Supplementary 
Tables 3–4) and recapitulated previously reported phenotypes14 
(Supplementary Fig. 2c).

Mismatched sgRNAs mediated a range of phenotypes, span-
ning from that of the corresponding perfectly matched sgRNA to 

those of negative control sgRNAs (Fig. 2c). To account for differ-
ences in absolute growth phenotypes, we normalized the phenotype 
of each mismatched sgRNA to that of its corresponding perfectly 
matched sgRNA (relative activity, Fig. 2b) and filtered for series in 
which the perfectly matched sgRNA had a strong growth pheno-
type (see Methods). Relative activities measured in K562 and Jurkat 
cells were well correlated (Fig. 2d), regardless of differences in abso-
lute phenotype of the perfectly matched sgRNAs (Supplementary 
Fig. 2d,e). We therefore averaged relative activities from both cell 
lines for further analysis. Although the majority of mismatched 
sgRNAs were inactive (Fig. 2d), particularly if they contained  
two mismatches (Supplementary Fig. 2f), approximately 25% 
of mismatched sgRNAs exhibited intermediate activity (relative  
activity 0.1–0.9).

To understand the rules governing the impacts of mismatches 
on activity, we stratified the relative activities of singly mismatched 
sgRNAs by the properties of the mismatch. As expected, mismatch 
position was a strong determinant of activity, with mismatches closer 
to the PAM leading to lower relative activity (Fig. 2e). In agreement 
with patterns of Cas9 off-target activity27,28, sgRNAs with rG:dT 
mismatches (A to G mutations in the sgRNA) retained substantial 
activity, even for mismatches close to the PAM (Fig. 2f). Other fac-
tors had smaller effects on activity and were more context depen-
dent. For example, sgRNAs with higher GC content or for which 
the first, invariant G matched the genome, retained higher activity 
for mismatches located nine or more bases upstream of the PAM 
(positions −9 to −19), and mismatch-surrounding G nucleotides 
were associated with marginally higher activity for mismatches in 
the intermediate region (Supplementary Fig. 2g–i). CRISPRi activi-
ties of mismatched sgRNAs were moderately correlated with Cas9 
cutting scores in the presence of mismatches (cutting frequency 
determination (CFD) scores27), but Cas9 cutting appears to be less 
sensitive to many types of mismatches (Supplementary Fig. 2j). In 
contrast, the CRISPRi activities of mismatched sgRNAs were well 
correlated with previous in vitro measurements of dCas9 binding 
on-rates in the presence of mismatches29 (Fig. 2g). The activities  
of mismatched sgRNAs in CRISPRi thus seem to be determined  
by general biophysical rules; a premise further supported by the 
high correlation of relative activities obtained in different cell  
lines (Fig. 2d).

Overall, 86.7% of sgRNA series contained at least two sgRNAs 
with intermediate activity (relative activity 0.1–0.9; Supplementary 
Fig. 2k). As we explored only ~20% of possible single mis-
matches and <1% of possible double mismatches, it is likely that  
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Fig. 1 | Mismatched sgRNAs titrate GFP expression at the single-cell level. a, Experimental design to test knockdown conferred by all mismatched 
variants of a GFP-targeting sgRNA. b, Distributions of GFP levels in cells with perfectly matched sgRNA (top), mismatched sgRNAs (middle) and 
nontargeting control sgRNA (bottom). Sequences of sgRNAs are indicated on the right (without PAM). c, Relative activities of all mismatched sgRNAs, 
defined as the ratio of fold knockdown conferred by mismatched sgRNA to fold knockdown conferred by perfectly matched sgRNA. Data represent mean 
relative activities obtained from two replicate transductions.
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intermediate-activity sgRNAs also exist for the remaining series. 
Altogether, these results suggest that systematically mismatched 
sgRNAs provide a general method to titrate CRISPRi activity and 
consequently, target gene expression.

Controlling sgRNA activity with modified constant regions. We 
also explored the orthogonal approach of generating intermediate-
activity sgRNAs through modifications to the sgRNA constant 
region, which is required for binding to Cas9. Although previous 
work has established that such modifications can lead to varied 
effects on Cas9 activity19,30–34, the mutational landscape of the con-
stant region has only been sparsely explored and largely with the 
goal of preserving sgRNA activity.

To comprehensively assess the activities of modified sgRNA con-
stant regions, we designed 995 constant-region variants comprising  

all single-nucleotide substitutions, base-pair substitutions and com-
binations of these changes (Methods and Supplementary Table 5) 
and determined the growth phenotypes for each variant paired 
with 30 targeting sequences against ten essential genes in pooled 
CRISPRi screens in K562 cells (Fig. 3a, Supplementary Fig. 3a and 
Supplementary Tables 1,6,7). We calculated relative activities for 
each targeting sequence and constant-region pair by normalizing its 
phenotype to that of the targeting sequence paired with the unmod-
ified constant region, identifying 409 constant-region variants that 
on average conferred intermediate activity (0.1–0.9; Fig. 3b). Ten 
variants selected for individual evaluation mediated intermediate 
mRNA knockdown (Supplementary Fig. 3b). Mapping the activi-
ties of constant-region variants with single-base substitutions onto 
the structure recapitulated known relationships between constant-
region structure and function. For example, substitution of bases in 
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Fig. 2 | A large-scale CRISPRi screen identifies factors governing mismatched sgRNA activity. a, Design of a large-scale mismatched sgRNA library.  
b, Schematic diagram of a pooled CRISPRi screen to determine activities of mismatched sgRNAs. Oligo, oligonucleotide. c, Growth phenotypes (γ) in K562 
and Jurkat cells for four sgRNA series, with perfectly matched sgRNAs shown in darker colors and mismatched sgRNAs shown in corresponding lighter 
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cells. Marginal histograms depict distributions of relative activities along the corresponding axes. Data are from n = 41,512 sgRNAs; r2 = squared Pearson 
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to the PAM. Categories contain n = 1,372–3,374 sgRNAs. f, Distribution of mismatched sgRNA relative activities stratified by type of mismatch, grouped  
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screen. Values are compared for identical combinations of mismatch type and mismatch position; mean relative activities were calculated by averaging 
relative activities for all mismatched sgRNAs with a given combination. Data are from n = 57 unique combinations of mismatch type and position; 
r2 = squared Pearson correlation coefficient. Lines in violin plots e and f denote distribution quartiles.
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the first stem loop or the nexus that mediates contacts with Cas919 
reduced activity, whereas substitutions in regions not contacted by 
Cas9 (such as the hairpin region of stem loop 2) were well tolerated 
(Fig. 3c). Notably, several variants carrying substitutions in stem 
loop 2 had consistently increased activities (Fig. 3b,c).

Evaluating the relative activities of constant-region variants 
across the 30 targeting sequences revealed consistent rank order-
ing but substantial variation in the actual values (Fig. 3d and 
Supplementary Fig. 3c). For example, a targeting sequence against 
TUBB retained high activity with ~100 constant-region variants 
with which other targeting sequences lost activity, whereas a tar-
geting sequence against SNRPD2 lost activity with ~50 variants 
that otherwise conferred intermediate activity (Fig. 3d). In some 
but not all cases (Fig. 3e), this heterogeneity extended to differ-
ent targeting sequences against the same gene, both at the level 
of growth phenotype (Fig. 3f,g and Supplementary Fig. 3d,e) 
and mRNA knockdown (Supplementary Fig. 3b). This hetero-
geneous behavior could be a consequence of structural interac-
tions between specific targeting sequences and constant regions 
or of differences in basal sgRNA expression levels, such that lowly 
expressed sgRNAs are more susceptible to constant-region modi-
fications. Thus, although modified constant regions can be used to 
titrate gene expression, the activity of a given constant region and 
targeting sequence pair is difficult to predict. We therefore focused  
on sgRNAs with mismatches in the targeting region for the 
remainder of our work, given that the activities of these sgRNAs 
appeared to be governed directly by more readily discernible bio-
physical principles.

A neural network predicts mismatched sgRNA activities with 
high accuracy. We next sought to leverage our large-scale data-
set of mismatched sgRNA activities to learn the underlying rules 
in a principled manner and enable predictions of intermediate-
activity sgRNAs against other genes. We reasoned that a convolu-
tional neural network (CNN) would be well suited to uncovering 
these rules owing to the ability of CNNs to learn complex global  
and local dependencies on spatially ordered features, such as nucle-
otide sequences35, including factors governing CRISPR guide RNA 
activity36,37.

We constructed our CNN model using two convolution steps, 
a pooling step and a three-layer fully connected neural network 
(Fig. 4a and Supplementary Fig. 4a). As inputs, the model received 
sgRNA relative activities paired with nucleotide sequences rep-
resented by binarized three-dimensional arrays, denoting the 
genomic sequence of the target and the associated sgRNA mismatch 
(Fig. 4a and Supplementary Table 8). After optimizing hyperparam-
eters using a cross-validated randomized grid search on the training 
dataset (80% of randomly selected sgRNA series; Supplementary 
Fig. 4b–d and Methods), we trained 20 independent, equivalently 
initialized models for eight epochs, which minimized loss without 
extensive over-fitting (Supplementary Fig. 4e). Predicted and mea-
sured sgRNA relative activities for the validation sgRNA set (the 
remaining 20% of series that were not used to optimize parameters 
or train the model) were well correlated (r2 = 0.65), with mean pre-
dictions of the 20-model ensemble outperforming all individual 
models (Fig. 4b and Supplementary Fig. 4f). The correlation coef-
ficients for individual sgRNA series were unimodally distributed 
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(25th–75th percentile range: 0.77–0.93), indicating that the model 
performed comparably well for most series (Fig. 4c). Model accu-
racy varied by mismatch position and type, with the highest accu-
racies corresponding to mismatches in the PAM-proximal seed 
region (Supplementary Fig. 4g,h). The accuracy of CNN predic-
tions showed no correlation with off-target specificity scores, sug-
gesting that off-target effects did not substantially contribute to the 
phenotypes we measured (Supplementary Fig. 4i). Despite the fact 
that the model was trained on relative growth phenotypes, it accu-
rately predicted relative fluorescence values measured in the GFP 
experiment (Fig. 4d), further supporting the hypothesis that rela-
tive growth phenotypes report on biophysical attributes of sgRNA–
DNA interactions.

To derive intermediate-activity sgRNAs for all human genes, we 
used the CNN ensemble to predict relative activities for all 57 singly 
mismatched sgRNAs for the top five sgRNAs against each gene in 
the hCRISPRi-v2.1 library14 (Supplementary Table 9). On the basis 
of the accuracy of predictions for the validation set, we estimated 
that for any given gene, sampling three sgRNAs with predicted rela-
tive activity between 0.37 and 0.63 would yield at least one sgRNA of 
intermediate activity (0.1–0.9) over 95% of the time (Supplementary 

Fig. 4j–m). This resource should therefore enable the titration of 
any gene of interest.

To further understand the features of mismatched sgRNAs that 
contribute most to their activity, which is difficult to assess directly 
with a deep-learning model, we also trained an elastic net linear 
regression model on the same data using a curated set of features 
(see Methods). This linear model explained less variance in rela-
tive activities than the CNN model (r2 = 0.52, Supplementary Fig. 
5a,b), implying that our feature set was incomplete and/or sgRNA 
activity was partly determined by nonlinear combinations of fea-
tures; nonetheless, the relative activities predicted by the different 
models were well correlated (r2 = 0.74; Supplementary Fig. 5c). 
Consistent with our earlier observations, mismatch position and 
type were assigned the largest weights in the model, although other 
features such as GC content and the identities of flanking bases up 
to three nucleotides from the mismatch contributed to the pre-
dictions as well (Supplementary Fig. 5d,e). For any given position 
the type of mismatch contributed differentially to the prediction, 
which was especially pronounced in the sgRNA intermediate region 
(Supplementary Fig. 5f). Taken together, these data demonstrate 
that the activities of mismatch-containing sgRNAs are determined 

80%

Training:
1,628 series
21,007 sgRNAs

Validation:
406 series
5,241 sgRNAs

20%

Genome

0
PAM

+3

–5

–10

–15

–20

–22

GA C T

sgRNA

Convolution
1

Features:
–17 C to A (rA:dG)

Target:

yi

yi

xi

relative activity
Output:

relative activity
(predicted)

Final output:

1
20

20

X

m=1
ym

relative activity
(mean predicted)

+

Convolution
2

Max pool Fully connected

Train 20 models

model 1

0.86

a

b c d

0.0 0.5 1.0 1.5

Predicted relative activity

0.0

0.5

1.0

1.5

M
ea

su
re

d 
re

la
tiv

e 
ac

tiv
ity r 2 = 0.65

–0.4 –0.2 0.0 0.2 0.4 0.6 0.8 1.0

Pearson correlation coefficient (r )

0

20

40

60

80

100

120

N
o.

 o
f v

al
id

at
io

n 
se

rie
s

–19 rC:dT

–13 rG:dT

0.0 0.2 0.4 0.6 0.8 1.0

Predicted relative activity

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

su
re

d 
re

la
tiv

e 
ac

tiv
ity r 2 = 0.70

∑

Fig. 4 | Neural network predictions of sgRNA activity. a, Schematic diagram of a singly mismatched sgRNA feature array (Xi) and the CNN architecture 
trained on pairs of such arrays and their corresponding relative activities (yi). Black squares in Xi represent the value 1 (the presence of a base at the 
indicated position); white represents 0. The mean prediction from 20 independently trained models was used to assign a final prediction (ŷ) to each 
sgRNA in the hold-out validation set (orange). b, Comparison of measured relative growth phenotypes from the large-scale screen and predicted activities 
assigned by the neural network. Marginal histograms show distributions of relative activities along the corresponding axes. Data are from n = 5,241 
sgRNAs; r2 = squared Pearson correlation coefficient. c, Distribution of Pearson r values (predicted versus measured relative activity) for each sgRNA series 
in the validation set. Data are from n = 406 series. d, Comparison of measured relative activity (relative knockdown) in the GFP experiment and predicted 
relative sgRNA activity. Two outliers with lower-than-predicted activity are annotated with their respective mismatch position and type. Predictions are 
shown as mean ± s.d. from the 20-model ensemble. Data are from n = 57 sgRNAs; r2 = squared Pearson correlation coefficient.

NATuRe BIoTeCHNoLoGy | www.nature.com/naturebiotechnology

http://www.nature.com/naturebiotechnology


Articles NATuRe BIOTeCHNOlOgy

by multiple factors that can be captured using supervised machine-
learning approaches.

A compact mismatched sgRNA library conferring intermediate 
phenotypes. We next set out to design a more compact version of 
our large-scale library to titrate essential genes with a limited num-
ber of sgRNAs. We selected 2,405 genes that we had found to be 
essential for robust growth of K562 cells in our large-scale screen, 
divided the relative activity space into six bins and attempted to 
select mismatched variants from each of the center four bins (rela-
tive activities between 0.1 and 0.9) for two sgRNA series targeting 
each gene. If a bin did not contain a previously measured sgRNA, 
we selected one from the CNN model ensemble predictions, fil-
tered to exclude sgRNAs with off-target binding potential (Fig. 5a, 
Supplementary Fig. 6a–c and Supplementary Table 10).

We evaluated the relative activities of sgRNAs in the compact 
library using pooled CRISPRi growth screens in K562 and HeLa 
cells (Supplementary Fig. 6d–f and Supplementary Tables 11,12). 
The correlation of measured and predicted relative activities of the 
imputed sgRNAs was lower than that observed for the validation 
set in our CNN model (r2 = 0.24; Supplementary Fig. 6g), although 
the imputed sgRNAs were selected from predicted activity bins that 
were associated with higher model errors and indeed, the per-bin 
errors were consistent between the imputed sgRNAs and the CNN 
model validation set (Supplementary Fig. 6h). Whereas the major-
ity of mismatched sgRNAs in the large-scale screen were inactive, 
relative activities in the compact library were evenly distributed 
(Fig. 5b and Supplementary Fig. 6i). Relative sgRNA activities 
measured in K562 cells were well correlated with those measured 
in the large-scale screen (r2 = 0.7) and relative activities were also 
well correlated between K562 and HeLa cells (r2 = 0.59; Fig. 5c). In 
addition, in a chemical-genetic screen in K562 cells for sensitivity 
to lovastatin, a potent HMG-CoA reductase inhibitor, even mod-
erate-activity sgRNAs targeting HMGCR strongly reduced growth 
in the presence of lovastatin, suggesting that our approach could be 
used to probe drug–gene interactions (Supplementary Fig. 6j,k and 
Supplementary Tables 11,12). Altogether, these data demonstrate 
that our library reproducibly provides access to intermediate phe-
notypes for this core gene set in multiple cell types.

Exploring expression–phenotype relationships with sgRNA 
series. Finally, we sought to use sgRNA series to explore expression– 

phenotype relationships for a diverse set of genes. To simulta-
neously measure gene expression levels and the resulting cellu-
lar phenotypes for multiple series, we used Perturb-seq, which 
enables matched capture of the transcriptome and the identity of 
an expressed sgRNA for each individual cell in pools of cells34,38–40 
(Supplementary Fig. 7a). We targeted 25 genes involved in essential 
cell biological processes (Supplementary Table 13) with series of 5–6 
sgRNAs (138 sgRNAs in total including 10 nontargeting controls; 
Supplementary Table 1). We then subjected pooled K562 CRISPRi 
cells expressing these sgRNAs from a modified CROP-seq vec-
tor40,41 to single-cell RNA-seq (scRNA-seq), using the sgRNA bar-
codes to assign unique sgRNA identities to ~19,600 cells (median 
122 cells per sgRNA; Supplementary Fig. 7b,c and Supplementary  
Table 14). In addition to the single-cell transcriptomes, we mea-
sured the bulk growth phenotypes conferred by the sgRNAs in these 
cells, which were well correlated with those from the large-scale 
screen and were used to assign sgRNA relative activities for further  
analysis (Methods, Supplementary Fig. 7d,e and Supplementary 
Tables 15,16).

We first used the scRNA-seq data to assess the expression levels 
of each targeted gene. To account for cell-to-cell variability in tran-
script capture efficiency, we quantified target gene unique molecu-
lar identifier (UMI) counts as a fraction of total UMI count in a 
given cell (Supplementary Fig. 8a), although analyzing raw UMI 
counts yielded similar results (Supplementary Fig. 9). For approxi-
mately half of the genes targeted we were able to directly assess 
expression levels at the single-cell level (median >10 UMIs per cell; 
Fig. 6a and Supplementary Fig. 8a). These expression levels were 
largely unimodally distributed, with medians shifting downwards 
with increasing sgRNA activity (Fig. 6a). For some genes, how-
ever, two populations with different knockdown levels were appar-
ent (Fig. 6a and Supplementary Fig. 8a). These populations were 
present both with intermediate-activity sgRNAs and the perfectly 
matched sgRNAs, suggesting that they did not result from limited 
knockdown penetrance for intermediate-activity sgRNAs. For genes 
with intermediate-to-low expression we typically observed 0–4 
UMIs per cell, rendering the quantification of single-cell expres-
sion levels more difficult. We nonetheless observed a shift of the 
distribution to lower UMI numbers with increasing sgRNA activity 
(Supplementary Figs. 8a,9) as well as a decrease in mean expres-
sion levels when averaging expression across all cells with the same 
sgRNA (Supplementary Fig. 8b).
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Titration was also apparent at the level of the transcriptional 
responses, which provided a robust single-cell measurement of the 
phenotype induced by depletion of the targeted gene. In the simplest 
cases, knockdown led to substantial global reductions in cellular 
UMI counts, consistent with large-scale inhibition of mRNA tran-
scription (Fig. 6b and Supplementary Fig. 10a). Examples include 
GATA1, a central myeloid lineage transcription factor, POLR2H, a 
core subunit of RNA polymerase II (and RNA polymerases I and 
III) or to a lesser extent BCR, which is fused to the driver oncogene 
ABL1 in K562 cells. Notably, the reduction in UMI counts corre-
lated linearly with growth phenotype within sgRNA series (Fig. 6b 
and Supplementary Fig. 10b) but exhibited nonlinear relationships 
with target gene knockdown, at least in the cases of GATA1 and 
POLR2H (Fig. 6c and Supplementary Fig. 10b; BCR levels are dif-
ficult to quantify accurately). Both relationships appeared to be sig-
moidal but with different thresholds: cellular UMI counts dropped 
sharply once GATA1 mRNA levels were reduced by 50% but a larger 
reduction of POLR2H mRNA levels was required to achieve a simi-
larly sized effect.

Knockdown of most of the other targeted genes did not perturb 
total UMI counts to the same extent (Supplementary Fig. 10a) but 
resulted in other transcriptional responses. Knockdown of CAD, 
for example, triggered cell-cycle stalling during S-phase, as had 
been observed previously34, with a higher frequency of stalling with 
increasing sgRNA activity (Supplementary Fig. 10c,d). Knockdown 
of HSPA9, the mitochondrial Hsp70 isoform, induced the expected 
transcriptional signature corresponding to activation of the ISR, 
including upregulation of DDIT3 (CHOP), DDIT4, ATF5 and 
ASNS34,42. The magnitude of this transcriptional signature increased 
with increasing sgRNA activity at both the population (Fig. 6d) and 
the single-cell level (Fig. 6e), although populations with interme-
diate-activity sgRNAs had larger cell-to-cell variation in response 
magnitude. Similarly, the transcriptional responses to knockdown 
of other genes scaled with sgRNA activity and exhibited larger vari-
ance for intermediate-activity sgRNAs (Fig. 6e).

We next compared the expression levels of the targeted gene to 
the magnitudes of the resulting phenotypes. Within each series, two 
metrics of phenotype, bulk population growth phenotype and tran-
scriptional response, were well correlated, despite substantial differ-
ences in the absolute magnitudes of the transcriptional responses 
with different series (Fig. 6f and Supplementary Fig. 10e–g). In 
contrast, the relationships between either metric of phenotype and 
target gene expression were strongly gene-specific (Fig. 6g and 
Supplementary Fig. 10h–j). For HSPA5 and GATA1, for example, a 
reduction in mRNA levels by ~50% was sufficient to induce a near-
maximal transcriptional response and growth defect, whereas for 
most other genes, a larger reduction was required. These results sug-
gest that K562 cells are intolerant to moderate decreases in expres-
sion of GATA1 and HSPA5, with sharp transitions from growth to 
death once expression levels drop below a threshold. More broadly, 
these results highlight the utility of titrating gene expression to map 
expression–phenotype relationships and quantitatively define gene 
expression sufficiency.

Following single-cell trajectories along a continuum of gene 
expression levels. To gain further insight into the diversity of 
responses induced by depletion of essential genes, we compared 
the transcriptional profiles induced by each individual sgRNA. 
Averaging transcriptional profiles across all cells with the same 
sgRNA and clustering the resulting mean profiles revealed multiple 
groups segregated by biological function, including a cluster of ribo-
somal proteins and POLR1D, a subunit of the rRNA-transcribing 
RNA polymerase I (and of RNA polymerase III) and a cluster of 
perturbations that activate the ISR (HSPA9, HSPE1 and EIF2S1/
eIF2α; Supplementary Fig. 11a). To further visualize the space of 
transcriptional states, we performed dimensionality reduction on 

the single-cell transcriptomes using UMAP43. The resulting projec-
tion recapitulated the clustering, as indicated, for example, by the 
close proximity of cells with perturbations of HSPA9, HSPE1 and 
EIF2S1 (Fig. 6h). Within individual series, cells projected further 
outward in UMAP space with increasing sgRNA activity, further 
highlighting the titration of gene expression levels at the single-cell 
level (Fig. 6i).

Closer examination of the UMAP projection revealed more 
granular structure, including the grouping of a subset of cells with 
knockdown of ATP5E, a subunit of ATP synthase, with cells with 
ISR-activating perturbations (Fig. 6h). This subset of cells indeed 
exhibited classical features of ISR activation (Supplementary Fig. 
11b). The frequency of ISR activation increased with lower ATP5E 
mRNA levels, but even at the lowest levels, some cells did not exhibit 
ISR activation (Fig. 6j and Supplementary Fig. 11b). These results 
suggest that depletion of ATP synthase under these conditions pre-
disposes cells to ISR activation, perhaps by exacerbating transient 
phases of mitochondrial stress in a manner that is proportional to 
ATP synthase levels. More broadly, these results highlight the utility 
of titrating gene expression in probing cell biological phenotypes, 
especially in conjunction with rich phenotyping methods, such as 
scRNA-seq.

Discussion
Here we describe the development of an approach to systematically 
titrate gene expression in human cells using allelic series of attenu-
ated sgRNAs. These series, either individually or as a pool, have a 
broad range of applications across basic and biomedical research. 
We highlight the utility of the approach by mapping gene expression 
levels to phenotypes with single-cell resolution, enabling identifi-
cation of gene-specific viability thresholds and expression-level-
dependent cell fates.

Our approach builds on in vitro work describing the biophysi-
cal principles by which modifications to the sgRNA modulate  
(d)Cas9 binding on-rates and activity16,28,29,44,45. In cells, modifica-
tions to the sgRNA constant region were affected by specific interac-
tions with targeting sequences, rendering sgRNA activities difficult 
to predict. In contrast, the effects of targeting sequence mismatches 
on sgRNA activity followed readily discernible biophysical prin-
ciples, enabling us to apply machine-learning approaches to derive 
the underlying rules and predict series for arbitrary sgRNAs. The 
resulting genome-wide in silico library (Supplementary Table 9) 
enables titration of any expressed gene. We also describe a compact 
(~25,000-element) library that enables titration of ~2,400 essential 
genes (Supplementary Table 10), with potential applications for 
example in focused screens for sensitization to chemical or genetic 
perturbations. Our approach yields intermediate-activity sgRNAs 
in a predictable manner, is readily scalable to target any number of 
genes, in contrast to approaches that titrate gene expression using 
microRNAs or synthetic biology tools, and provides access to many 
expression levels of each gene in a single pooled experiment, in con-
trast to approaches that rely on small molecules to control (d)Cas9 
activity. The sgRNA activities also hold across different cell models, 
suggesting that the approach should be widely applicable to models 
in which CRISPRi is available, including primary cell models, such 
as iPSCs or organoids23,46,47. In these settings, combining sgRNA 
series with single-cell readout can circumvent limitations, such as 
small cell numbers and low transduction efficiency, as meaning-
ful phenotypes can be extracted from far fewer cells than typically 
needed for bulk readouts.

These sgRNA series now enable systematic mapping of expres-
sion–phenotype relationships directly in mammalian systems, 
with implications for human genetics, evolutionary biology and 
disease biology. As an example, we highlight how minimal expres-
sion levels that sustain cell growth vary for different genes, with 
K562 cells being particularly sensitive to depletion of GATA1 and 

NATuRe BIoTeCHNoLoGy | www.nature.com/naturebiotechnology

http://www.nature.com/naturebiotechnology


ArticlesNATuRe BIOTeCHNOlOgy

HSPA5. This variability suggests gene-specific buffering capacities, 
in line with findings in yeast4, but the logic by which these buffering 
capacities are determined in mammalian systems remains unclear. 
Comprehensive efforts to generate such dose–response curves 
across cell models could begin to reveal the underlying principles 
that have shaped gene expression levels. Analogous efforts to map 
dose–response curves in cancer cells could identify specific vulner-
abilities as targets for therapeutic drugs and vice versa, mapping 
these curves for cancer-driver genes or genes underlying specific 
diseases could enable defining the corresponding therapeutic win-
dows as goals for drug development.

Our intermediate-activity sgRNAs also provide access to diverse 
cell states including loss-of-function phenotypes that otherwise may 
be obscured by cell death or neomorphic behavior. Thus, our approach 
enables positioning cells at states of interest to record chemical–gene 
or gene–gene interactions or to characterize transcriptional trajecto-
ries near phenotypic transitions. These sgRNA series will also facili-
tate recapitulating gene expression levels of disease-relevant states, 
such as haploinsufficiency or partial loss-of-function, enabling 
efforts to identify suppressors or modifiers, or modeling quantitative 
trait loci associated with multigenic traits in conjunction with rich 
phenotyping to identify the mechanisms by which they interact and 
contribute to such traits. Finally, mismatched sgRNAs can be used to 
titrate dCas9 occupancy and activity in other applications, such as 
CRISPRa or other dCas9-based epigenetic modifiers.

In summary, our allelic series approach provides a scalable tool 
to titrate gene expression and evaluate dose–response relationships 
in mammalian systems. This resource should be equally enabling to 
systematic large-scale efforts and detailed single-gene investigations 
in basic cell biology, drug development and functional genomics.
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Methods
Reagents and cell lines. K562 and Jurkat cells were grown in RPMI-1640 medium 
(Gibco) with 25 mM HEPES, 2 mM l-glutamine, 2 g l−1 NaHCO3 supplemented 
with 10% (v/v) standard fetal bovine serum (FBS; HyClone or VWR), 100 U ml−1 
penicillin, 100 µg ml−1 streptomycin, and 2 mM l-glutamine (Gibco). HEK293T and 
HeLa cells were grown in DMEM (Gibco) with 25 mM d-glucose, 3.7 g l−1 NaHCO3, 
4 mM l-glutamine and supplemented with 10% (v/v) FBS, 100 U ml−1 penicillin, 
100 µg ml−1 streptomycin and 2 mM l-glutamine. K562 (chronic myelogenous 
leukemia) and HeLa (cervical carcinoma) cells were derived from female patients. 
Jurkat (acute T cell lymphocytic leukemia) cells were derived from a male patient. 
HEK293T (embryonic kidney) cells were derived from a female fetus. The K562 
and HeLa CRISPRi cell lines and the GFP+ K562 CRISPRi cell line were previously 
published18,25,34. Jurkat CRISPRi cells (clone NH7) were obtained from the Berkeley 
Cell Culture Facility. All cell lines were grown at 37 °C in the presence of 5% CO2. 
All cell lines were periodically tested for mycoplasma contamination using the 
MycoAlert Plus Mycoplasma detection kit (Lonza).

DNA transfections and virus production. Lentivirus was generated by 
transfecting HEK239T cells with four packaging plasmids (for expression of 
VSV-G, Gag/Pol, Rev and Tat, respectively) as well as the transfer plasmid using 
TransIT-LT1 Transfection Reagent (Mirus Bio). Viral supernatant was collected 
2 d after transfection and filtered through 0.44-µm polyvinylidene difluoride filters 
and/or frozen before transduction.

Cloning of individual sgRNAs. Individual perfectly matched or mismatched 
sgRNAs were cloned as described previously18. Briefly, two complementary 
oligonucleotides (Integrated DNA Technologies), containing the targeting region 
as well as overhangs matching those left by restriction digest of the backbone 
with BstXI and BlpI, were annealed and ligated into an sgRNA expression vector 
digested with BstXI (NEB or Thermo Fisher Scientific) and BlpI (NEB) or 
Bpu1102I (Thermo Fisher Scientific). The ligation product was transformed into 
Stellar chemically competent Escherichia coli cells (Takara Bio) and plasmid was 
prepared following standard protocols.

Individual evaluation of sgRNA phenotypes for GFP knockdown. For individual 
evaluation of GFP knockdown phenotypes, sgRNAs were individually cloned 
as described above, ligated into a version of pU6-sgCXCR4–2 (marked with a 
puromycin resistance cassette and mCherry, Addgene 46917)25 and modified 
to include a BlpI site. Sequences used for individual evaluation are listed in 
Supplementary Table 1. The sgRNA expression vectors were individually packaged 
into lentivirus and transduced into GFP+ K562 CRISPRi cells34 at multiplicity 
of infection (MOI) < 1 (15–40% infected cells) by centrifugation at 1,000g and 
33 °C for 0.5–2 h. GFP levels were recorded 10 d after transduction by flow 
cytometry using a FACSCelesta flow cytometer (BD Biosciences), gating for 
sgRNA-expressing cells (mCherry+). Experiments were performed in duplicate 
from the transduction step. Relative activities were defined as the fold knockdown 
of each mismatched variant (GFPsgRNA[nontargeting] / GFPsgRNA[variant]) divided by the 
fold knockdown of the perfectly matched sgRNA. The background fluorescence 
of a GFP− cell line was subtracted from all GFP values before performing other 
calculations. Data were analyzed in Python 2.7 using the FlowCytometryTools 
package (v.0.5.0). The distributions of GFP values in Fig. 1b were plotted following 
the example in https://seaborn.pydata.org/examples/kde_ridgeplot.

Design of large-scale mismatched sgRNA library. To generate the list of targeting 
sgRNAs for the large-scale mismatched sgRNA library, hit genes from a growth 
screen performed in K562 cells with the CRISPRi v2 library14 were selected by 
calculating a discriminant score (phenotype z score × −log10(Mann–Whitney P)). 
Discriminant scores for negative control genes (randomly sampled groups of ten 
nontargeting sgRNAs) were also calculated and hit genes were selected above a 
threshold such that 5% of the hits would be negative control genes (an estimated 
empirical 5% FDR). This procedure resulted in the selection of 2,477 genes. Of these, 
28 genes for which the second strongest sgRNA by absolute value had a positive 
growth phenotype were filtered out as these were likely to be scored as hits solely due 
to a single sgRNA. For the remaining 2,449 genes, the two sgRNAs with the strongest 
growth phenotype were selected, for a total of 4,898 perfectly matched sgRNAs.

For each of these sgRNAs, a set of 23 variant sgRNAs with mismatches was 
designed: 5 with a single randomly chosen mismatch within 7 bases of the PAM, 
5 with a single randomly chosen mismatch 8–12 bases from the PAM and 3 with 
a single randomly chosen mismatch 13–19 bases from the PAM (the first base of 
the targeting region was never selected for this purpose as it is an invariant G in 
all sgRNAs to enable transcription from the U6 promoter). The remaining ten 
variants had two randomly chosen mismatches selected from positions −1 to −19. 
The compiled sgRNA sequences were then filtered for sgRNAs containing BstXI, 
BlpI or SbfI sites, which are used during library cloning and sequencing library 
preparation and 2,500 negative controls (randomly generated to match the base 
composition of the hCRISPRi-v2 library) were added. Note that the first base of 
all sgRNAs was fixed as a G, regardless of whether or not it matched the genome, 
consistent with the design of the hCRISPRi-v2 library14. Sequences of sgRNAs and 
descriptions of mismatches are listed in Supplementary Table 2.

Assessment of off-target potential. To assess the off-target potential of 
mismatched sgRNAs, we first extended our previous strategy to estimate sgRNA 
off-target effects14,18. Briefly, for each target in the genome, a FASTQ entry was 
created for the 23 bases of the target, including the PAM, with the accompanying 
empirical Phred score indicating an estimate of the anticipated importance of a 
mismatch in that base position. Bowtie (http://bowtie-bio.sourceforge.net)48 was 
used to align each designed sgRNA back to the genome (or a subset of the genome 
solely encompassing annotated transcription start sites flanked by 500 base pairs), 
parameterized so that sgRNAs were considered to mutually align if and only if: 
(1) no more than three mismatches existed in the PAM-proximal 12 bases and the 
PAM, and (2) the summed Phred score of all mismatched positions across the 23 
bases was less than the threshold. This alignment was performed iteratively with 
decreasing thresholds and any sgRNAs that aligned successfully to no other site in 
the genome at a particular threshold were then deemed to have a specificity at the 
given threshold.

Subsequently, the empirical measurements of relative activities of CRISPRi 
sgRNAs in the presence of mismatches from our large-scale screen afforded 
the opportunity to calculate the off-target potential in a more nuanced manner, 
akin to the methods used to measure off-target potential for CRISPR cutting as 
implemented, for example, in GuideScan49. Briefly, we used Cas-OFFinder50 to first 
find all potential off-target sites up to three mismatches away for each sgRNA. We 
then aggregated these off-target sites into a specificity score for each sgRNA:

specificity score ¼ 1Pn
i¼1 RAi  qi

Where n represents the number of sites with up to three mismatches, RA  
represents the empirically measured relative CRISPRi activity of each sgRNA at 
this target site given the positions and types of mismatches and q represents the 
number of times the ith site occurs in the genome. In particular, RA was calculated 
as follows:

RA ¼
Ym

j¼1

RAj

Where m represents the number of mismatches between the sgRNA and the target 
site and RAj represents the mean relative activity of sgRNAs with mismatch j 
(given mismatch type at given sgRNA position). An equivalent methodology was 
previously used to assess off-target potential of sgRNAs in CRISPR cutting27,49. 
If the mismatched site was the intended on-target site (because many of our 
sgRNAs contained mismatches to the intended on-target site), we instead assigned 
it as RA = 1 to keep specificity scores on a scale of 0 to 1. A specificity score of 1 
indicates that there are no off-target sites with up to three mismatches in  
the genome.

We also calculated equivalent specificity scores using the empirically 
measured CFD scores, which were determined by measuring cutting frequency 
at mismatched sites27. Note that CRISPR cutting seems to be less sensitive to 
mismatches (see also Supplementary Fig. 2j) and thus specificity scores calculated 
using CFD scores are frequently lower than those calculated using relative  
CRISPRi activities.

We also note that the off-target potential calculated in this manner is likely 
overestimated, as binding of CRISPRi sgRNAs in most regions of the genome 
outside of promoters, transcription start sites, enhancers or similar regions is 
relatively innocuous. Nonetheless, these off-target specificity scores can serve 
as guidelines in sgRNA selection. All four off-target scoring metrics (Bowtie 
threshold genome-wide, Bowtie threshold near transcription start sites only, off-
target specificity score calculated using CRISPRi relative activities and off-target 
specificity score calculated using CFDs) are included in Supplementary Table 2 as 
well as in Supplementary Tables 9 and 10.

Pooled cloning of mismatched sgRNA libraries. Pooled sgRNA libraries were 
cloned as described previously18,26,51. Briefly, oligonucleotide pools containing 
the desired elements with flanking restriction sites and PCR adapters were 
obtained from Agilent Technologies. The oligonucleotide pools were amplified 
by 15 cycles of PCR using Phusion polymerase (NEB). The PCR product was 
digested with BstXI (Thermo Fisher Scientific) and Bpu1102I (Thermo Fisher 
Scientific), purified, and ligated into BstXI/Bpu1102I-digested pCRISPRia-v2 
(sgRNA expression vector marked with a puromycin resistance cassette and blue 
fluorescent protein (BFP), Addgene 84832)14 at 16 °C for 16 h. The ligation product 
was purified by isopropanol precipitation and then transformed into MegaX 
DH10B electrocompetent cells (Thermo Fisher Scientific) by electroporation 
using the Gene Pulser Xcell system (Bio-Rad), transforming ~100 ng purified 
ligation product per 100-µl cells. The cells were allowed to recover in 3–6 ml of 
SOC medium for 2 h. At that point, a small 1–5 µl aliquot was removed and plated 
in three serial dilutions on LB plates with selective antibiotic (carbenicillin). 
The remainder of the culture was inoculated into 0.5–1 l LB supplemented with 
100 µg ml−1 carbenicillin, grown at 37 °C with shaking at 220 r.p.m. for 16 h and 
collected by centrifugation. Colonies on the plates were counted to confirm a 
transformation efficiency greater than 100-fold over the number of elements 
( >100× coverage). The pooled sgRNA plasmid library was extracted from the cells 
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by GigaPrep (Qiagen or Zymo Research). Even coverage of library elements was 
confirmed by sequencing a small aliquot on a HiSeq 4000 (Illumina).

Large-scale mismatched sgRNA screen and sequencing library preparation. 
Large-scale screens were conducted similarly to previously described screens14,18,26. 
The large-scale library was transduced in duplicate into K562 CRISPRi and Jurkat 
CRISPRi cells at MOI < 1 (percentage of transduced cells 2 d after transduction: 
20–40%) by centrifugation at 1,000g and 33 °C for 2 h. Replicates were maintained 
separately in 0.5–1 l of RPMI-1640 in 1-l spinner flasks for the course of the 
screen. Two days after transduction, the cells were selected with puromycin for 2 d 
(K562: 2 d of 1 µg ml−1; Jurkat: 1 d of 1 µg ml−1 and 1 d of 0.5 µg ml−1), at which point 
transduced cells accounted for 80–95% of the population, as measured by flow 
cytometry using an LSR-II flow cytometer (BD Biosciences). Cells were allowed 
to recover for 1 d in the absence of puromycin. At this point, t0 samples with a 
3,000× library coverage (400 × 106 cells) were collected and the remaining cells 
were cultured further. The cells were maintained in spinner flasks by daily dilution 
to 0.5 × 106 cells ml−1 at an average coverage of greater than 2,000 cells per sgRNA 
with daily measurements of cell numbers and viability on an Accuri bench-top 
flow cytometer (BD BioSciences) for 11 d, at which point endpoint samples were 
collected by centrifugation with 3,000× library coverage.

Genomic DNA was isolated from frozen cell samples and the sgRNA-encoding 
region was enriched, amplified and processed for sequencing essentially as 
described previously14. Briefly, genomic DNA was isolated using a NucleoSpin 
Blood XL kit (Macherey–Nagel), using 1 column per 100 × 106 cells. The isolated 
genomic DNA was digested with 400 U SbfI-HF (NEB) per mg DNA at 37 °C for 
16 h. To isolate the ~500-bp fragment containing the sgRNA expression cassette 
liberated by this digest, size separation was performed using large-scale gel 
electrophoresis with 0.8% agarose gels. The region containing DNA fragments 
between 200–800 bp was excised and DNA was purified using the NucleoSpin 
Gel and PCR Cleanup kit (Macherey–Nagel). The isolated DNA was quantified 
using a Qubit Fluorometer (Thermo Fisher Scientific) and then amplified by 23 
cycles of PCR using Phusion polymerase (NEB), appending Illumina adaptor 
and unique sample indices in the process. Each DNA sample was divided into 
5–50 individual 100-µl reactions, each with 500 ng DNA as input. To ensure base 
diversity during sequencing, the samples were divided into two sets, with all 
samples for a given replicate always being assigned to the same set. The two sets 
had the Illumina adaptors appended in opposite orientations, such that samples in 
set A were sequenced from the 5′ end of the sgRNA sequence in the first 20 cycles 
of sequencing and samples in set B were sequenced from the 3′ end of the sgRNA 
sequence in the next 20 cycles of sequencing. With updates to Illumina chemistry 
and software, this strategy is no longer required to ensure high sequencing quality 
and all samples are amplified in the same orientation. Following the PCR, all 
reactions for a given DNA sample were combined and a small aliquot (100–300 µl) 
was purified using AMPure XP beads (Beckman–Coulter) with a two-sided 
selection (0.65× followed by 1×). Sequencing libraries from all samples were 
combined and sequencing was performed on a HiSeq 4000 (Illumina) using single-
read 50 runs and with two custom sequencing primers (oCRISPRi_seq_V5 and 
oCRISPRi_seq_V4_3′; Supplementary Table 17). For samples that were amplified 
in the same orientation, only a single custom sequencing primer was added 
(oCRISPRi_seq_V5) and the samples were supplemented with a 5% PhiX spike-in.

Sequencing reads were aligned to the library sequences, counted, and 
quantified using the Python-based ScreenProcessing pipeline (https://github.
com/mhorlbeck/ScreenProcessing). Calculation of phenotypes was performed 
as described previously14,18,26. Untreated growth phenotypes (γ) were derived by 
calculating the log2 change in enrichment of an sgRNA in the endpoint and t0 
samples, subtracting the equivalent median value for all nontargeting sgRNAs, 
and dividing by the number of doublings of the population18,26. For sgRNAs with 
a read count of 0, a pseudocount of 1 was added. sgRNAs with <50 reads in both 
the endpoint and t0 samples in a given replicate were excluded from analysis. Read 
counts and phenotypes for individual sgRNAs are provided in Supplementary 
Table 3 and Supplementary Table 4, respectively. To calculate relative activities, 
phenotypes of mismatched sgRNAs were divided by those of the corresponding 
perfectly matched sgRNA. Relative activities were filtered for series in which the 
perfectly matched sgRNA had a growth phenotype greater than 5 z scores outside 
the distribution of negative control sgRNAs for all further analysis (3,147 and 2,029 
sgRNA series for K562 and Jurkat cells, respectively). Relative activities from both 
cell lines were averaged if the series passed the z score filter in both. All analyses 
were performed in Python 2.7 using a combination of Numpy (v.1.14.0), Pandas 
(v.0.23.4), and Scipy (v.1.1.0).

Design and pooled cloning of constant-region variants library. The sequences 
in the library of modified constant regions were derived from the sgRNA (F + E) 
optimized sequence30 modified to include a BlpI site18. Each modified constant 
region was paired with 36 sgRNA-targeting sequences (3 sgRNAs targeting each 
of ten essential genes and 6 nontargeting negative control sgRNAs). The cloning 
strategy (described below) allowed the substitution of most positions in the sgRNA 
constant region. A variety of modifications were made, including substitutions of 
all single bases not in the BlpI restriction site (which is used for cloning), double 
substitutions including all substitutions at base-paired position pairs not before 

or in the BlpI site, and a variety of triple, quadruple and sextuple substitutions, 
including base-pair-preserving substitutions at adjacent base pairs.

The library was ordered and cloned in two parts. One part consisted of ~100 
modifications to the eight bases upstream of the BlpI restriction site. Constant-
region variants with substitutions in this section were paired with each of the 
36 targeting sequences, ordered as a pooled oligonucleotide library (Twist 
Biosciences), and cloned into pCRISPRia-v2 as described above. The second part 
consisted of ~900 modifications to the 71 bases downstream of the BlpI restriction 
site. This part was cloned in two steps. First, all 36 targeting sequences were 
individually cloned into pCRISPRia-v2 as described above. The vectors were then 
pooled at an equimolar ratio and digested with BlpI (NEB) and XhoI (NEB). The 
modified constant-region variants were ordered as a pooled oligonucleotide library 
(Twist Biosciences), PCR-amplified with Phusion polymerase (NEB), digested with 
BlpI (NEB) and XhoI (NEB) and ligated into the digested vector pool, in a manner 
identical to previously published protocols and as described above, except for the 
different restriction enzymes.

Compact mismatched sgRNA library and constant-region library screens. 
Screens with the compact mismatched sgRNA library and the constant-region 
library were conducted largely as described above, with smaller modifications 
during the screening procedure and an updated sequencing library preparation 
protocol. Briefly, the libraries were transduced in duplicate into K562 CRISPRi 
(both libraries) or HeLa CRISPRi cells (compact mismatched sgRNA library) 
as described above. K562 replicates were maintained separately in 0.15–0.3 l of 
RPMI-1640 in 0.3-l spinner flasks for the course of the screen. HeLa replicates 
were maintained in sets of ten 15-cm plates. Cells were selected with puromycin 
as described above (K562: 1 d of 0.75 µg ml−1 and 1 d of 0.85 µg ml−1; HeLa: 2 d 
of 0.8 µg ml−1 and 1 d of 1 µg ml−1). The remainder of the screen was carried out 
at >1,000× library coverage (K562 compact mismatched sgRNA library: >2,000×; 
HeLa compact mismatched sgRNA library: >1,000×; and K562 constant-region 
library: >2,000×). For the drug screen, 10 µM lovastatin (ApexBio) or an equivalent 
volume of DMSO (vehicle) was added to flasks at t = 0 and 3 d later cells were 
pelleted and re-suspended in fresh medium. Lovastatin (12 µM) or DMSO was 
again added after 5 and 9 d of growth, with medium exchanges 3 d after drug 
supplementation. Multiple samples were collected after 4–8 d for the K562 and 
HeLa growth screens. Both drug-treated and vehicle-treated samples were collected 
after 12 d for the drug screen, which allowed for a difference of 3.5–4.1 cell 
population doublings between drug- and vehicle-treated groups.

Genomic DNA was isolated from frozen cell samples as described above. The 
subsequent sequencing library preparation was simplified to omit the enrichment 
step by gel extraction. In particular, following the genomic DNA extraction, DNA 
was quantified by absorbance at 260 nm using a NanoDrop One spectrophotometer 
(Thermo Fisher Scientific) and then directly amplified by 22–23 cycles of PCR 
using NEBNext Ultra II Q5 PCR MasterMix (NEB), appending Illumina adaptor 
and unique sample indices in the process. Each DNA sample was divided into 
50–200 individual 100-µl reactions, each with 10 µg of DNA as input. All samples 
were amplified using the same strategy and in the same orientation. Following 
the PCR, all reactions for a given DNA sample were combined and purified as 
described above. Sequencing libraries from all samples were combined prior 
to sequencing. For the compact mismatched-library screens, sequencing was 
performed on a HiSeq 4000 (Illumina) using single-read 50 runs with a 5% PhiX 
spike-in and a custom sequencing primer (oCRISPRi_seq_V5; Supplementary 
Table 17). For the constant-region screens, the PCR primers were adapted to 
allow for amplification of the entire constant region and to append a standard 
Illumina read 2 primer binding site (Supplementary Table 17). Sequencing was 
then performed in the same manner, including the custom sequencing primer 
(oCRISPRi_seq_v5) and a 5% PhiX spike-in, but using paired-read 150 runs.

Sequencing reads were processed as described above, except that sgRNAs 
with <50 reads (compact mismatched sgRNA library) or <25 reads (constant-
region library) in both the endpoint and t0 samples in a given replicate or with a 
read count of 0 in either sample were excluded from analysis. Read counts and 
phenotypes for individual sgRNAs are available in Supplementary Tables 6–7 
(constant-region screen) and Supplementary Tables 11–12 (compact mismatched 
sgRNA library screen).

Generation and evaluation of individual constant-region variants by RT-qPCR. 
Constant-region variants were evaluated in the background of a constant region 
with an additional base-pair substitution in the first stem loop (fourth base pair 
changed from AT to GC32). Ten constant-region variants with average relative 
activities between 0.2–0.8 from the screen and carrying substitutions after the BlpI 
site were selected (Supplementary Table 17). Cloning of individual constant regions 
was performed essentially as the cloning of sgRNA-targeting regions, described 
above, except that the BlpI and XhoI restriction sites were used for cloning (the 
XhoI site is immediately downstream of the constant region) and that cloning was 
performed with a variant of pCRISPRia-v2 carrying the stem loop substitution. 
For each of the ten constant-region variants, as well as the constant region carrying 
only the stem loop substitution, two different targeting regions against DPH2 were 
cloned as described above (Supplementary Table 1). These 22 vectors, as well as a 
vector with a nontargeting negative control sgRNA (Supplementary Table 1) were 

NATuRe BIoTeCHNoLoGy | www.nature.com/naturebiotechnology

https://github.com/mhorlbeck/ScreenProcessing
https://github.com/mhorlbeck/ScreenProcessing
http://www.nature.com/naturebiotechnology


ArticlesNATuRe BIOTeCHNOlOgy

individually packaged into lentivirus and transduced into K562 CRISPRi cells 
at MOI < 1 (10–50% infected cells) by centrifugation at 1,000g and 33 °C for 2 h. 
Cells were allowed to recover for 2 d and then selected to purity with puromycin 
(1.5–3 µg ml−1), as assessed by measuring the fraction of BFP-positive cells by flow 
cytometry on an LSR-II (BD Biosciences), allowed to recover for 1 d, and collected 
in aliquots of 0.5–2 × 106 cells for RNA extraction. RNA was extracted using the 
RNeasy Mini kit (Qiagen) with on-column DNase digestion (Qiagen) and reverse-
transcribed using SuperScript II Reverse Transcriptase (Thermo Fisher Scientific) 
with oligo(dT) primers in the presence of RNaseOUT Recombinant Ribonuclease 
Inhibitor (Thermo Fisher Scientific). Quantitative PCR (qPCR) reactions were 
performed in 22-µl reactions by adding 20 µl of master mix containing 1.1× 
Colorless GoTaq Reaction buffer (Promega), 0.7 mM MgCl2, dNTPs (0.2 mM 
each), primers (0.75 µM each) and 0.1× SYBR Green with GoTaq DNA polymerase 
(Promega) to 2 µl of cDNA or water. Reactions were run on a LightCycler 480 
Instrument (Roche). For each cDNA sample, reactions were set up with qPCR 
primers against DPH2 and ACTB (sequences listed in Supplementary Table 17). 
Experiments were performed in technical triplicates.

Machine learning. To establish a subset of highly active sgRNAs with which to 
train a machine-learning model, we filtered for perfectly matched sgRNAs with 
a growth phenotype greater than 10 z scores outside the distribution of negative 
control sgRNAs in the K562 and/or Jurkat pooled screens (K562 γ < −0.21; 
Jurkat γ < −0.35). All singly mismatched variants derived from sgRNAs passing 
the filter were then included and relative activities were calculated as described 
previously, averaging the replicate measurements for each sgRNA. In cases where 
a perfectly matched sgRNA passed the filter in the K562 and Jurkat screen, the 
average relative activity across both cell types was calculated for each mismatched 
variant; otherwise the relative activities for only one cell type were considered. This 
filtering scheme resulted in 26,248 mismatched sgRNAs comprising 2,034 series, 
targeting 1,292 genes, with approximately 40% of relative activity values averaged 
from K562 and Jurkat cells.

For each sgRNA, a set of features was defined based on the sequences of 
the genomic target and the mismatched sgRNA. First, the genomic sequence 
extending from 22 bases 5′ of the beginning of the PAM to 1 base 3′ of the end of 
the PAM (26 bases in all) was binarized into a two-dimensional array of shape (4, 
26), with 0 s and 1 s indicating the absence or presence of a particular nucleotide 
at each position, respectively. Next, a similar array was constructed representing 
the mismatch imparted by the sgRNA, with an additional potential mismatch at 
the 5′ terminus of the sgRNA (position −20), which invariably begins with G in 
our libraries due to the U6 promoter. Thus, the mismatched sequence array was 
identical to the genomic sequence array except for 1 or 2 positions. Finally, the 
arrays were stacked into a three-dimensional volume of shape (4, 26, 2), which 
served as the feature set for that particular sgRNA.

The training set of sgRNAs was established by randomly selecting 80% of 
sgRNA series, with the remaining 20% set aside for model validation. A CNN 
regression model was then designed using Keras (https://keras.io/) with a 
TensorFlow backend engine, consisting of two sequential convolution layers, a max 
pooling layer, a flattening layer and, finally, a three-layer fully connected network, 
terminating in a single neuron. Additional regularization was achieved by adding 
dropout layers after the pooling step and between each fully connected layer. To 
penalize the model for ignoring under-represented sgRNA classes (such as those 
with intermediate relative activity), training sgRNAs were binned according to 
relative activity and sample weights inversely proportional to the population in each 
bin were assigned. Hyperparameters were optimized using a randomized grid search 
with threefold cross-validation with the training set as input. Parameters included 
the size, shape, stride and number of convolution filters, the pooling strategy, the 
number of neurons and layers in the dense network, the extent of dropout applied at 
each regularization step, the activation functions in each layer, the loss function and 
the model optimizer. Ultimately, 20 CNN models with identical starting parameters 
were individually trained for eight epochs in batches of 32 sgRNAs. Performance 
was assessed by computing the average prediction of the 20-model ensemble for 
each validation sgRNA and comparing it to the measured value.

A linear regression model was trained on the same set of sgRNAs, albeit with 
modified features more suited for this approach. These features included the 
identities of bases in and around the PAM, whether the invariant G at the 5′ end 
of the sgRNA was base paired, the GC content of the sgRNA, the change in GC 
content due to the point mutation, the location of the protospacer relative to the 
annotated transcription start site, the identities of the three RNA bases on either 
side of the mismatch and the location and type of each mismatch. All features were 
binarized except for GC and ∆GC content. In total, each sgRNA was represented 
by a vector of 270 features, 228 of which described the mismatch position and type 
(19 possible positions by 12 possible types). Before training, feature vectors were 
z-normalized to set the mean to 0 and variance to 1. Finally, an elastic net linear 
regression model was created using the scikit-learn Python package (https://scikit-
learn.org) and key hyperparameters (α and L1 ratio) were optimized using a grid 
search with threefold cross-validation during training.

Design of compact library. Genes targeted by the compact allelic series library 
were required to have at least one perfectly matched sgRNA with a growth 

phenotype greater than two z scores outside the distribution of negative control 
sgRNAs (γ < −0.04) in a single replicate of a K562 pooled screen (this work or 
Horlbeck et al.14). By this metric, 4,722 unique sgRNAs targeting 2,405 essential 
genes were included. Next, for each perfectly matched sgRNA, variants containing 
all 57 single mismatches in the targeting sequence (positions −19 to −1) were 
generated in silico and sequences with off-target binding potential in the human 
genome were filtered out as described previously14. Remaining variant sgRNAs 
were whitelisted for potential selection in subsequent steps.

For each gene being targeted, if both of the perfectly matched sgRNAs 
imparted growth phenotypes greater than three z scores outside the distribution 
of negative controls (γ < −0.06) in this work’s large-scale K562 screen, then one 
series of four variant sgRNAs was generated from each. Otherwise, one series of 
eight variants was generated from the sgRNA with the stronger phenotype. Both 
perfectly matched sgRNAs were included, regardless of their growth phenotype, for 
a total of two perfectly matched and eight mismatched sgRNAs per gene.

To select mismatched sgRNAs, we first divided the relative activity space 
into six bins with edges at 0.1, 0.3, 0.5, 0.7 and 0.9. For each series, we attempted 
to select sgRNAs from each of the middle four bins (centers at 0.2, 0.4, 0.6 and 
0.8 relative activity) as measured in this work’s K562 screen. If multiple sgRNAs 
were available in a particular bin, they were prioritized on the basis of distance 
to the center of the bin and variance between replicate measurements. If no 
previously measured sgRNA was available in a given bin, then the CNN model 
was run on all whitelisted (new) mismatched sgRNAs belonging to that series and 
sgRNAs were selected based on predicted activity as needed. In total, the compact 
library was composed of 4,722 unique perfectly matched sgRNAs, 19,210 unique 
mismatched sgRNAs and 1,202 nontargeting control sgRNAs. Approximately 
68% of mismatched sgRNAs were evaluated in previous screens (72% single 
mismatches and 28% double mismatches), with the remaining 32% imputed from 
the CNN model (all single mismatches). Sequences of sgRNAs and descriptions of 
mismatches are listed in Supplementary Table 10.

Availability of sgRNA libraries. The large-scale and compact mismatched sgRNA 
libraries are available at Addgene under catalog numbers 136478 (large scale) and 
136479 (compact).

Perturb-seq. The Perturb-seq experiment targeted 25 genes involved in a diverse 
range of essential functions (Supplementary Table 13). For each target gene, an 
original sgRNA and 4–5 mismatched sgRNAs, covering the range from full to low 
activity, were chosen from the large-scale screen. These 128 targeting sgRNAs, as 
well as 10 nontargeting negative control sgRNAs (Supplementary Table 1), were 
individually cloned into a modified variant of the CROP-seq vector40,41 as described 
above, except into the different vector. Lentivirus was individually packaged for 
each of the 138 sgRNAs and was collected and frozen in array. To determine 
viral titers, each virus was individually transduced into K562 CRISPRi cells by 
centrifugation at 1,000g and 33 °C for 2 h and the fraction of transduced cells was 
quantified as BFP+ cells using an LSR-II flow cytometer (BD Biosciences) 48 h after 
transduction.

To generate transduced cells for scRNA-seq analysis, virus for all 138 sgRNAs 
was pooled immediately before transduction and then transduced into K562 
CRISPRi cells by centrifugation at 1,000g and 33 °C for 2 h. To achieve even 
representation at the intended time of single-cell analysis, the virus pooling 
was adjusted both for titer and expected growth-rate defects. Three days after 
transduction, transduced (BFP+) cells were selected using FACS on a FACSAria2 
(BD Biosciences) and then re-suspended in conditioned medium (RPMI 
formulated as described above, except supplemented with 20% FBS and 20% 
supernatant of an exponentially growing K562 culture). Two days after sorting, 
the cells were loaded onto three lanes of a Chromium Single Cell 3′ V2 chip 
(10x Genomics) at 1,000 cells µl−1 and processed according to the manufacturer’s 
instructions.

The CROP-seq sgRNA barcode was PCR-amplified from the final scRNA-
seq libraries with a primer specific to the sgRNA expression cassette (oBA503; 
Supplementary Table 17) and a standard P5 primer (Supplementary Table 17), 
purified on a Blue Pippin 1.5% agarose cassette (Sage Science) with size selection 
range 436–534 bp and pooled with the scRNA-seq libraries at a ratio of 1:100. 
The libraries were sequenced on a HiSeq 4000 (Illumina) according to the 
manufacturer’s instructions (10x Genomics).

To measure the growth-rate defects conferred by each sgRNA for comparison 
with the transcriptional phenotypes, samples of ~500,000 transduced cells 
were taken from the same transduced cell population used in the Perturb-seq 
experiment 2, 7 and 12 d after transduction. Genomic DNA was extracted using 
the Nucleospin Blood kit (Macherey–Nagel) and sgRNA amplicons were prepared 
as described previously and above14, albeit with no genomic DNA digestion or 
gel purification and sequenced on HiSeq 4000 as described above for the other 
screens. Growth phenotypes were calculated by comparing normalized sgRNA 
abundances at day 7 and 12 to those at day 2, as described above. Read counts and 
growth phenotypes (γ and relative activity) for individual sgRNAs are available in 
Supplementary Table 15 and Supplementary Table 16, respectively. Relative sgRNA 
activities measured at day 7 (5 d of growth) were used to assign sgRNA activities in 
further analysis.
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Perturb-seq data analysis. Cell barcode and UMI calling, assignment of 
perturbations. UMI count tables with UMI counts for all genes in each individual 
cell were calculated from the raw sequencing data using CellRanger 2.1.1 (10x 
Genomics) with default settings. Perturbation calling was performed as described 
previously34. Briefly, reads from the specifically amplified sgRNA barcode libraries 
were aligned to a list of expected sgRNA barcode sequences using Bowtie (flags: 
-v3 -q -m1). Reads with common UMI and barcode identity were then collapsed 
to counts for each cell barcode, producing a list of possible perturbation identities 
contained by that cell. A proposed perturbation identity was identified as 
‘confident’ if it met thresholds derived by examining the distributions of reads and 
UMIs across all cells and candidate identities: (1) reads >50, (2) UMIs > 3, and (3) 
coverage (reads per UMI) in the upper mode of the observed distribution across 
all candidate identities. As described previously52, perturbation identities were 
called for any cell barcode with greater than 2,000 UMIs to enable capture of cells 
with strong growth defects. Any cell barcode containing two or more confident 
identities was deemed a ‘multiplet’ and may arise from either multiple infection or 
simultaneous encapsulation of more than one cell in a droplet during scRNA-seq. 
Cell barcodes passing the 2,000 UMI threshold and bearing a single, unambiguous 
perturbation barcode were included in all subsequent analyses. Cell counts for each 
perturbation are summarized in Supplementary Table 14.

Expression normalization. Some portions of analysis use normalized expression 
data. We used a relative normalization procedure based on comparison to the gene 
expression observed in control cells bearing nontargeting sgRNAs, as described 
previously:34

 1. Total UMI counts for each cell barcode are normalized to have the median 
number of UMIs observed in control cells.

 2. For each gene x, expression across all cell barcodes is z-normalized with 
respect to the mean (μx) and standard deviation (σx) observed in control cells:

xnormalized ¼ x � μx
σx

Following this normalization, control cells have average expression 0 (and 
standard deviation 1) for all genes. Negative and positive values therefore represent 
under and overexpression relative to control.

Target gene quantification. Expression levels of genes targeted by a given sgRNA 
were quantified by normalizing UMI counts of the targeted gene to the total 
UMI count for each individual cell (Supplementary Fig. 8). Considering raw 
UMI counts of the targeted gene (Supplementary Fig. 9) or z-normalized target 
gene expression, as described above, yielded similar results. Note that the sgRNA 
targeting BCR is toxic due to knockdown of the BCR-ABL1 fusion present in K562 
cells. Knockdown was apparent both in BCR and ABL1 expression, but we used 
BCR expression for further analysis as there were likely additional copies of ABL1 
that were not fused to BCR (and thus would not be affected by the BCR-targeting 
sgRNA) contributing to ABL1 expression.

Cell-cycle analysis. Calling of cell-cycle stages was performed using a similar 
approach to Macosko et al.53 and largely as described by Adamson et al.34. Briefly, 
lists of marker genes showing specific expression in different cell-cycle stages from 
the literature were first adapted to K562 cells by restricting to those that showed 
highly correlated expression within our experiment. The total (log2-normalized) 
expression of each set of marker genes was used to create scores for each cell-cycle 
stage within each cell and these scores were then z-normalized across all cells. Each 
cell was assigned to the cell-cycle stage with the highest score.

Differential gene expression analysis. We took two approaches to differential 
expression, as described previously52. For both approaches, we only considered 
genes with expression greater than 0.25 UMIs per cell on average across all cells. 
First, for a given gene, we could assess the changes in the expression distribution 
of that gene induced by a given genetic perturbation by comparing to the 
expression distribution observed in control cells bearing nontargeting sgRNAs. 
We performed this comparison using a two-sample Kolmogorov–Smirnov test and 
corrected for multiple-hypothesis testing at an FDR of 0.001 using the Benjamini–
Yekutieli procedure.

We also exploited a machine-learning approach that potentially allows correlated 
expression patterns to be detected and that scales beyond two-sample comparisons. 
Perturbed cells and control cells bearing nontargeting sgRNAs were each used as 
training data for a random forest classifier that was trained to predict which sgRNA 
a cell contained from its transcriptional state. As part of the training process, the 
classifier ranks which genes have the most prognostic power in predicting sgRNA 
identity, which by construction will tend to vary across condition. For further 
analyses, the top 100–300 genes by prognostic power were then considered.

To assess the overall magnitude of transcriptional changes in individual cells, 
z scores of differentially expressed genes were signed by the direction of change 
in cells with the perfectly matched sgRNA of a series (such that all z scores 
were positive in cells with the perfectly matched sgRNA) and then summed. 
Conclusions were robust across several metrics used to measure distance in gene 
expression space and aggregate these distances.

Constructing mean expression profiles. For some analyses, expression profiles were 
averaged across all cells with the same perturbation. In general, this was performed 
simply by calculating the mean z-normalized expression of all genes with mean 
expression level of 0.25 UMI or higher across all cells in the experiment or within 
the specific considered subpopulation (usually all cells with sgRNAs targeting a 
given gene as well as all control cells with nontargeting sgRNAs).

UMAP dimensionality reduction. For UMAP dimensionality reduction43 of  
all cells, the 300 genes with the highest prognostic power in distinguishing cells  
by targeted gene as ranked by a random forest classifier were selected. 
Dimensionality reduction was then performed on the z-normalized single-
cell expression profiles of the 300 genes using the following parameters: 
n_neighbors = 40, min_dist = 0.1, metric = ‘euclidean’ and spread = 1.0. 
UMAP dimensionality reduction of subpopulations, containing only cells with 
perturbation of a given gene or control cells, was performed analogously but using 
the expression profiles of the 100 genes with the highest prognostic power and 
using n_neighbors = 15.

From the UMAP projection, we concluded that ~5% cells had misassigned 
sgRNA identities, as evident for example by the presence of cells with negative 
control sgRNAs within the cluster of cells with HSPA5 knockdown. These  
cells had confidently assigned single perturbations and only expressed the 
corresponding barcode transcript, suggesting that they did not evade our  
doublet detection algorithm. We speculate that these cells expressed two  
different sgRNAs but silenced expression of one of the reporter transcripts.  
Given the strong trends in the results above, we concluded that this rate of 
misassignment did not substantially affect our ability to identify trends within  
cell populations.

ATP5E analysis and ISR scores. Analysis of ISR activation in cells with ATP5E 
knockdown was confounded by a small subpopulation of cells with residual 
activation of stress responses (cluster labeled with an asterisk in Fig. 6h). Cells 
within this cluster were excluded for analysis of ISR activation to ensure that the 
measured stress responses were indeed the result of ATP5E knockdown. Magnitude 
of ISR activation in individual cells was quantified as activation of the  
PERK (EIF2AK3) regulon from the gene set and activation coefficients  
determined previously34.

Statistics. Tests for differences in distributions of pairwise correlation 
coefficients of constant-region relative activities within and between gene targets 
(Supplementary Fig. 3d) were carried out with a two-tailed Student’s t-test. Tests 
for differential gene expression in the scRNA-seq data were performed with a 
two-sample Kolmogorov–Smirnov test and corrected for multiple-hypothesis 
testing at an FDR of 0.001 using the Benjamini–Yekutieli procedure, as described 
in the Methods section on Perturb-seq data analysis, along with other methods to 
analyze the single-cell RNA-seq data. Correlation coefficients reported are Pearson 
correlation coefficients unless otherwise indicated. Sample sizes used to calculate 
statistics are provided in the figure legends.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Raw and processed Perturb-seq data are available at GEO under accession code 
GSE132080. Raw and processed sgRNA read counts from pooled screens are 
provided as supplementary tables. All other data will be made available by the 
corresponding author upon reasonable request.

Code availability
Custom scripts in this manuscript largely build on scripts published 
previously14,34,52. An IPython notebook detailing the initialization of the CNN 
model and its use to predict mismatched sgRNA activities is included as a 
supplementary file. All custom scripts will be made available upon request.
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AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection Flow cytometry data were acquired with BD FACSDiva. qPCR data were recorded with Roche LightCycler software. Sequencing and single-
cell RNA-seq/perturb-seq data were collected using commercially available software from 10x Genomics and Illumina.

Data analysis Flow cytometry data were analyzed in Python 2.7 using the FlowCytometryTools package (v0.5.0) and visualized using seaborn (v0.9.0). 
Sequencing reads from pooled screens were aligned to the library sequences, counted, and quantified using the Python-based 
ScreenProcessing pipeline (https://github.com/mhorlbeck/ScreenProcessing). Initial off-target propensity for mismatched sgRNAs was 
scored using bowtie. Comprehensive off-target sites for sgRNAs were identified using Cas-OFFinder. Alignment of scRNA-seq reads, 
collapsing reads to unique molecular identifier (UMI) counts, cell calling, and depth normalization of mRNA libraries was performed in 
Cell Ranger 2.1.1 (10x Genomics). All analysis of screen and perturb-seq data was performed in Python 2.7 using custom code based on 
Numpy (v1.14.0), Pandas (v0.23.4), and Scipy (v1.1.0). The convolutional neural network was designed using Keras (https://keras.io/) with 
a TensorFlow backend engine. The linear regression model was created using the scikit-learn Python package (https://scikit-learn.org).

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers. 
We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

Raw and processed Perturb-seq data are available at GEO under accession code GSE132080. sgRNA read counts and phenotypes for all pooled screens are provided 
as supplementary tables. All other data will be made available by the corresponding author upon request.
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Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size The large-scale mismatched sgRNA screen, the constant region screen, and the compact mismatched sgRNA screen were performed in 
duplicate following conventions of the field. The perturb-seq experiment was conducted with ~23,600 cells to provide a coverage of ~122 cells 
per sgRNA. This coverage was selected based on previous work, which estimated the number of cells per perturbation required to evaluate 
gene level and signature level effects on transcription (Dixit et al, 2016).

Data exclusions For all screens, sgRNAs below a certain count threshold in deep sequencing were excluded. In general, we required that sgRNAs had >49 
counts in at least one of the two conditions that was being compared to calculate a given phenotype (pre-established exclusion criterion). For 
the large-scale mismatched sgRNA screen, series were excluded from in-depth analysis if the original sgRNA had a phenotype within 5 z-scores 
of the distribution of negative control sgRNA phenotypes (exclusion criterion not pre-established). For the perturb-seq experiment, cells with 
<2,000 UMIs were excluded as dead cells (CellRanger default parameter, pre-established exclusion criterion). In addition, cells with no 
assigned sgRNA identity or multiple assigned sgRNA identities were excluded (pre-established exclusion criterion). Finally, for analysis of stress 
response induction, a cluster of cells with residual stress response activation was excluded (exclusion criterion not pre-established).

Replication All screens were carried out in duplicate from the infection step. Individual results of the pooled screens were replicated in targeted assays as 
described in the manuscript. Flow cytometry experiments were performed in duplicate from the infection step.

Randomization Randomization is not applicable to this study as no statistical tests between groups were performed.

Blinding Blinding is not relevant to this study as no statistical tests between groups were performed.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Clinical data

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Eukaryotic cell lines
Policy information about cell lines

Cell line source(s) The K562 CRISPRi, GFP+ K562 CRISPRi, and HeLa CRISPRi cell lines were previously published (references 18, 25, and 34). 
Jurkat CRISPRi cells (Clone NH7) were obtained from the Berkeley Cell Culture Facility. HEK293T cells were obtained from 
ATCC.

Authentication None of the cell lines used were authenticated in this study.

Mycoplasma contamination All cell lines (K562, Jurkat, HEK293T, HeLa) tested negative for Mycoplasma.

Commonly misidentified lines
(See ICLAC register)

None
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Flow Cytometry
Plots

Confirm that:

The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

All plots are contour plots with outliers or pseudocolor plots.

A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation K562 cells expressing different sgRNAs were analyzed by flow cytometry without additional processing. K562 cells expressing the 
pool of sgRNAs for Perturb-seq were purified by fluorescence activated cell sorting after lentiviral transduction and growth in 
standard culture conditions, sorting for expression of the BFP marker.

Instrument Flow cytometry data were recorded on a BD Biosciences FACSCelesta or a BD Biosciences LSR-II. Cell sorting was performed on a 
BD FACSAria2.

Software Flow cytometry data were collected and cells were sorted using BD FACSDiva software. Data were analyzed using Python 2.7 and 
the FlowCytometryTools package (v0.5.0) and visualized using seaborn (v0.9.0).

Cell population abundance Sorted cell populations used for single-cell RNA-sequencing experiments were >95% BFP-positive.

Gating strategy For the GFP knockdown flow cytometry experiment, cells were gated for live cells on a FSC/SSC plot and then for sgRNA-
expressing cells by the co-expressed mCherry marker. The gate was set at the minimum between the two populations. To sort 
cells prior to the Perturb-seq experiment, cells were gated for live cells on a FSC/SSC plot, for singlets on a FSC-width/FSC-area 
plot, and then for sgRNA-expressing cells by the co-expressed BFP marker. The gate was set at the minimum between the two 
populations.

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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